天然气动态仿真真实数据处理研究报告范文_天然气模拟仿真软件
1.海洋天然气水合物勘探地震处理的最小平方反滤波设计及其应用
2.用图像处理技术研究油气田的航磁航放异常
3.西南石油大学的学术研究
4.GIS技术在国内的研究现状及其发展趋势
5.三维可视化技术在四川盆地油气勘探信息管理中的应用研究
6.石油天然气行业的安全评价
西安石油大学石油与天然气工程学科是西安石油大学下属的一个在职研究生学科,西安石油大学大学设有石油工程学院、地球科学与工程学院、电子工程学院、机械工程学院、材料科学与工程学院、计算机学院、化学化工学院、理学院、经济管理学院、人文学院、外国语学院、继续教育学院 ( 职业技术学院)、国际教育学院、思想政治理论教学科研部、音乐系、体育系16个院系部。西安石油大学石油与天然气工程学科研究生培养方案如下:
一、石油与天然气工程学科概况
“油气田开发工程”、“油气井工程”、“油气储运工程” 等学科分别于1990年、1994年和2001年获得硕士学位授权,2006年获得“石油与天然气工程”一级学科的硕士学位授权。2002年与2003年分别获得工程硕士与联合培养博士学位授权。在石油钻化学与环境保护、油气田开发与渗流理论及应用、油气井工程测量控制与信息应用技术、油气储输及安全技术等方面形成了鲜明特色。
本学科现有教授21人,副教授23人,博士学位教师38人。其中省“三秦学者”、“百人”和“教学名师”等6人,2007年被评为省级教学团队。本学科为陕西省重点学科,拥有国家、省部级重点实验室和工程中心等9个。“十一五”期间承担国家和省部级科研项目292项,科研经费共计1.1亿元。
二、石油与天然气工程培养目标
培养学生品行优良,具有良好的科学道德、敬业精神和合作精神;应掌握本学科坚实的基础理论和系统的专业知识,了解本学科发展趋势及技术研究前沿;能够运用专业知识、数学物理/化学方法、计算机技术等多种综合手段,分析和解决石油与天然气工程实践中存在的问题。具有从事科学研究工作或从事专门技术工作的能力。熟练掌握一门外语,具有实践能力、创新精神、国际视野与严谨求实的科学态度和作风。
三、石油与天然气工程培养年限
学习年限一般为3年,最长不超过4年。
四、二级学科及特色研究方向
本学科的二级学科包括:油气井工程、油气田开发工程、油气储运工程、海洋油气工程、非常规油气开发工程。
本学科形成了4个稳定的研究方向。
1. 石油钻化学与环境保护
本方向通过油气田开发工程、油气田应用化学与工程、环境化学与工程理论与技术交叉融合,进行化学作用机理研究及化学添加剂体系的开发与应用,为提高油气收率、保护储层与保护环境提供技术支撑。
2. 油气田开发与渗流理论及应用
本方向主要研究复杂油气藏油气渗流特征和物理/化学法油技术方法;建立油气田开发综合智能信息决策系统理论;将爆炸与燃烧、大功率电磁波等军工和高新技术应用于油气工程;研究物理(电磁、振动、高能气体)—化学耦合油增产新理论、新方法和新技术。
3. 油气井工程测量控制与信息应用技术
本方向主要研究油气井工程测量控制技术(特别是随钻测量和导向钻井控制技术);对油气井信息进行实时集、传输和处理,并与油气井测控技术相结合,实现油气井工程的动态监测、优化、控制以及提高决策与管理水平。
4. 油气储输及安全技术
本方向主要研究油气集输、储运工艺技术和完整性分析技术等。
五、课程设置、学时及学分规定
硕士研究生课程学习实行学分制,规定总学分(含实践环节)为32学分。课程结构设置为学位课、非学位课和必修环节。课程学习每18学时记1学分,学生必须修满32个学分。
六、培养方式与方法
1.研究生培养要德、智、体、美全面发展。政治理论学习应与思想政治教育相结合,积极参加公益劳动和体育活动。
2.研究生培养要理论联系实际,要深入掌握本学科专业的基础理论和专业知识,又要掌握教学、科研的方法,具备从事科学研究和独立担负专门技术工作的能力,要注意拓宽专业面。
3.在教学上,注重培养学生独立工作的能力,科学思维方法和创造性。教学的形式可以多样,应创造条件让研究生参加学术交流活动,了解本专业科技发展动向。
4.硕士研究生培养实行导师负责制。导师根据学位条例和培养方案,对每一位研究生制定出切实可行的培养。导师应教书育人,对研究生的政治思想、业务学习、工作科研等方面要定期检查,认真指导研究课题的进行。要注意培养研究生独立工作能力、创造能力和进取精神。
七、学位论文
论文工作是使研究生在科研方面受到较全面的基本训练,培养独立担负专门技术工作的能力。论文工作包括阅读文献、开题报告及撰写论文等。
1. 文献阅读和综述报告
在进入课题前,学生应查阅有关本研究方向和领域发展状况的国内外学术论文和技术报告,阅读数量不少于50篇(国外至少20篇),并完成一份综述报告(3000-5000字)。
2. 学位论文选题和开题报告
学位论文选题来源于应用课题或现实问题,有明确的职业背景和应用价值,并有一定的工作量。要能体现学生综合应用理论、方法和技术研究并解决工程技术问题或社会实践问题的能力。
开题报告选题应属于本学科范围。开题报告应该包括论文开题依据、研究内容、技术路径、创新点,以及论文完成拟提交的最终成果,由包括指导教师在内的论证小组给出评定意见。第五学期进行论文中期检查。
3. 学位论文质量要求
学位论文工作达到在开题中规定的目标,由学生独立完成。学位论文要求文句简练、通顺、图表清晰、数据可靠、撰写规范、严格准确地表达研究成果,实事求是地表述结论。
4. 学位论文评阅和答辩
需按照《西安石油大学硕士学位授予工作细则》执行。
考研政策不清晰?同等学力在职申硕有困惑?院校专业不好选?点击底部,有专业老师为你答疑解惑,211/985名校研究生硕士/博士开放网申报名中:s://.87dh/yjs2/
海洋天然气水合物勘探地震处理的最小平方反滤波设计及其应用
2020燃气安全整治工作方案报告
为切实加强燃气行业管理,规范燃气市场经营秩序,充分保障人民群众生命财产安全,省安委会办公室决定在全省范围内组织开展城镇燃气安全。我为大家整理的2020燃气安全整治工作方案报告资料,提供参考,欢迎参阅。
?
?
各市安全生产委员会,省安委会有关成员单位:
根据《xx省安全生产委员会2020年工作要点》和我省工作实际,现将《xx省城镇燃气安全工作方案》印发你们,请结合实际认真贯彻落实。
xx省安全生产委员会办公室
2020年x月xx日
方案为切实加强燃气行业管理,规范燃气市场经营秩序,充分保障人民群众生命财产安全,省安委会办公室决定在全省范围内组织开展城镇燃气安全。特制订工作方案如下:
一
工作目标
坚持以新时代中国特色社会主义思想为指导,深入学习贯彻总书记关于安全生产的重要论述,认真贯彻落实省委、省关于安全生产的部署要求,坚持标本兼治、条块结合,进一步厘清并落实属地管理责任和部门监管责任,健全信息化监管体系,发挥网格化社会治理机制作用,把排查整治与建章立制贯穿全过程,着力建立完善长效监管工作机制,消除各类燃气安全风险隐患,力争不发生燃气供应安全生产伤亡事故,减少燃气安全使用事故总量,有效防范餐饮场所燃气爆炸事故,遏制较大事故,坚决杜绝重特大事故,切实提升城镇燃气安全水平。
二
整治时间
2020年5月至12月
三
整治范围
全面排查城镇燃气供应场站设施;整治供应违规违法经营、使用环节的安全风险隐患;严厉打击充装非自有钢瓶、超期未检钢瓶、违规检验钢瓶等行为;加强液化石油气、气瓶及调压阀、连接管等配件产品质量管理;全面排查各类餐饮场所燃气使用安全风险隐患;建立气瓶安全信息追溯系统、推动燃气泄漏监控信息平台建设提升安全监管能力。
四
整治重点
(一)燃气经营企业安全生产管理。
1.各类场站、天然气管道等设施设备是否符合《住房和城乡建设部公安部城镇燃气反恐怖防范工作标准》《xx省城镇燃气安全检查标准》《关于加强城镇燃气消防安全管理的通知》等规范要求。
2.是否按照《生产安全事故应急预案管理办法》制定完善各类应急预案,落实应急救援、安保防范工作各项要求。
3.是否落实全员安全生产责任制,加强员工安全、消防和安保教育培训,相关法律法规要求持证上岗的是否100%持证上岗。
(二)瓶装液化气市场经营秩序。
4.瓶装液化气企业是否加强对供应站(点)、送气车辆、送气人员的管理,统一车辆及人员标志标识。
5.瓶装液化气企业是否落实用户实名制购气登记,建立健全用户服务信息系统,统一配送、统一管理、统一标准、统一服务。
6.加强对本行政区域出入道口运送钢瓶车辆的关注和临检布控,依法打击?黑气点?、流动?黑气贩?等违法犯罪行为。
7.燃气经营企业是否制定用户安全用气规则,通过向用户发放安全用气手册、公众号推送等方式,对用户进行燃气安全使用宣传和指导。
(三)气瓶充装、检验单位(机构)行为及产品质量。
8.气瓶充装单位是否建立气瓶安全信息追溯系统,实现充装数据与地方监管部门的实时联网传输。
9.气瓶检验机构是否建立气瓶安全信息追溯系统、建立本单位检验气瓶的电子技术档案,实现检验机构的气瓶检验数据信息与气瓶充装单位、地方监管部门互联互通。
10.气瓶充装单位是否充装非自有产权气瓶、超期未检气瓶、非法改装气瓶、报废气瓶和无信息标识气瓶;严厉打击无资质充装二甲醚、擅自在民用液化石油气中掺混二甲醚的行为。
11.气瓶检验机构是否建立相关制度,检验人员是否持证上岗;是否按照检验规范标准开展检验工作;是否存在出具虚检验数据、检验报告和检验标志行为;是否存在非法改装气瓶、翻新气瓶,或者擅自销售报废气瓶等违法行为;是否冒用其他检验机构名称进行检验。
12.对辖区内销售的液化石油气钢瓶、角阀、减压阀、灶具、热水器等产品质量开展,依法查处无证经营、销售不合格钢瓶、阀门、灶具和热水器等违法行为,及时向社会公布产品质量监督抽查和风险监测结果。
(四)餐饮场所燃气安全使用管理。
13.餐饮用户是否与合法供气企业签订供用气合同,使用符合国家标准的燃气器具以及连接管、调压阀等配件;
14.餐饮用户是否每月对户内燃气设施设备使用情况进行一次全面自查(自查内容详见附件1);是否在餐饮场所显著位置张贴公示燃气安全使用信息公示牌(详见附件2)。
15.餐饮场所是否存在违规储存、使用瓶装液化气的行为;用气场所、燃气设备设施、用气操作是否符合要求。
五
整治措施
(一)严格隐患销号。督促燃气经营企业建立?滚动排查、清单管理、动态销号?制度;一时难以整改到位的,要责令制定详细可操作的整改,落实整改责任人、整改费用、整改措施、整改期限,实行挂牌督办,同时取必要措施,确保安全,有效完成隐患治理的工作闭环。
(二)明确配送标准。贯彻落实《危险货物道路运输管理办法》,使用货车运送液化气的,应当申请许可;使用三轮车、电动车开展城市内?最后一公里?配送的,可以不申请许可。县级以上地方人民要研究制定本地区瓶装液化气配送服务管理办法,制定钢瓶配送的小型运输工具技术标准和行为规范,确保配送安全。
(三)严格市场准入。严格安全准入,做好燃气经营许可证和气瓶充装许可证的核发,把好市场准入关。对已经进入市场的液化气企业,要加强充装、销售、配送和入户安检等环节经营检查,对没有健全的经营方案、自有产权气瓶数量与经营规模不匹配的,未建立配送服务体系、气瓶安全信息追溯系统、客户服务系统确保产品与服务质量安全责任可溯源的,要限期整改,整改后仍不达标的,坚决予以清出市场。
(四)实施智能管控。加快推进非居民用户,特别是餐饮场所安装带有燃气泄漏监测报警及自动切断功能的装置,建立燃气泄漏报警远程监控系统,实时分析集的燃气浓度,及时预警、同步推送,利用手机APP实时动态查看燃气浓度。
(五)强化监督执法。对检查发现的违法行为和隐患,严格依法责令?三停?、行政拘留和临时查封等处罚和强制措施。定期检查餐饮用户自查情况和隐患整改情况,对整改不到位或拒不整改的,燃气经营企业应取停止供气措施,由属地街镇和餐饮行业主管部门责令停业整顿。
六
责任分工
(一)住房城乡建设部门(城镇燃气、城管执法):依据院《城镇燃气管理条例》《xx省城镇燃气管理条例》等法规、规章,负责具体实施本地区燃气行业的管理工作,并按规定实施行政许可和行政处罚。负责督促燃气经营企业按照法律法规、标准规范和合同的约定,承担用户燃气设施巡检、燃气使用安全技术指导和宣传责任;负责督促燃气经营企业安全生产、瓶装液化石油气实名制销售、建立客户服务平台等工作。负责查处燃气违法经营行为,依法取缔非法经营站(点);对违反法律、法规和国家标准、行业标准的燃气经营企业进行查处。
(二)市场监管部门:依据《特种设备安全法》《特种设备安全监察条例》《气瓶安全技术监察规程》等法律、安全技术规范,对液化气气瓶充装、检验单位、特种设备作业人员实施行政许可和监督检查;对液化气储罐、罐车等压力容器及其它特种设备实施使用登记和安全监管。对充装非自有气瓶、超期未检(报废)钢瓶等行为进行查处,加快建立气瓶安全信息追溯系统,确保溯源管理。依据《无证无照经营查处办法》,对未办理营业执照的餐饮场所进行查处。依据《产品质量法》,对液化石油气、燃气器具及配件产品生产、流通领域开展产品质量监督抽查,对生产、销售不符合安全标准的燃气器具及液化石油气、充气过程中缺斤少两、掺混二甲醚等违法行为进行查处。
(三)商务部门:负责组织餐饮场所开展燃气使用安全自查工作,对自查情况及隐患整改情况进行督促检查;督促餐饮场所经营者与合法的供气企业签订供用气合同,按照有关规定安装可燃气体浓度报警装置,配备干粉灭火器等消防器材。
(四)公安部门:依法处理阻碍执行公务等违反治安管理的行为;配合城镇燃气、城管执法、市场监管等部门对非法储存、倒罐、销售液化气的行为和窝点进行依法查处;对非法经营、销售伪劣产品、非法储存、运输、携带、使用瓶装液化石油气危及公共安全的,依法追究刑事责任;依据《道路交通安全法》《道路交通安全违法行为处理程序规定》《危险化学品安全管理条例》等法律、法规、规章,负责瓶装液化石油气道路运输车辆交通安全管理;配合城镇燃气、城管执法部门依法打击跨区域运输经营等违法行为。
(五)应急管理部门:依据有关部门申请,对在燃气使用方面存在重大隐患的场所以安委办名义实行挂牌督办。对于有关燃气安全的举报,依据《xx省安全生产举报奖励办法》有关规定依法处理。对涉及燃气安全的严重违法违规行为的企业和个人纳入安全生产?黑名单?管理。
(六)消防部门:依据《消防法》《xx省消防条例》等法律、法规,对燃气企业、餐饮单位遵守法律、法规的情况进行监督检查;负责对餐饮场所的消防安全实施专项监管;依法查处餐饮场所违反消防法律法规的行为。
(七)交通运输管理部门:依据《危险化学品安全管理条例》《道路危险货物运输管理规定》《道路运输车辆动态监督管理办法》等法规的相关规定,负责道路、水路危险货物运输企业、车辆、船只、从业人员、港区装卸管理人员、申报人员的资质管理,对危化品运输车辆非法运输瓶装液化石油气等违规行为依法进行处罚。
(八)教育、民政、旅游、卫生部门:负责组织本行业管理的燃气用户开展燃气使用安全自查工作,对自查情况及隐患整改情况进行督促检查;督促其与合法的供气企业签订供用气合同,按照有关规定安装可燃气体浓度报警装置,配备干粉灭火器等消防器材。鼓励引导瓶装液化石油气用户逐步改用天然气。
(九)其他有关部门:依照有关法律、法规的规定,在各自职责范围内负责有关燃气安全管理工作。
七
工作步骤
(一)动员部署阶段(2020年5月31日前)。各地结合本地区实际制定具体实施方案,细化整治工作目标、任务和措施,明确相关部门、单位燃气管理工作职责,全面动员部署各级各单位迅速开展工作。
(二)排查整治阶段(2020年6月至10月)。一是开展全面排查。组织燃气经营企业、充装单位、钢瓶检验机构、餐饮用户等单位及其他燃气用户自行组织排查治理,对排查出的安全隐患,建立台账、列出清单、逐项整改。6月15日前完成排查工作。二是集中检查约谈曝光。组成联合检查组依法开展督查,对燃气经营企业、气瓶检验机构、餐饮用户等企业负责人进行约谈,充分利用法律、行政、经济、舆论等手段,督促落实安全责任措施。三是实施综合治理。对排查发现的违法违规行为和隐患进行分析研判,完善长效机制,全面推进城镇燃气安全管理制度化、规范化、长效化。
(三)总结验收阶段(2020年11月至12月)。对工作进行检查验收,检查验收情况纳入2020年度安全生产和消防考核内容。
八
工作要求
(一)加强组织领导,周密安排部署。各地、各有关部门依据相关法律法规和职能分工,开展监督检查,督促落实工作。
请省直各有关部门于2020年5月20日前将本部门工作负责人、联络员名单及****报省住房和城乡建设厅。
(二)加强协调配合,形成监管合力。各地、各有关部门要加强协作配合,联合组织检查、督查,对发现的问题要追根溯源、一查到底,建立健全信息共享、情况通报、联合查处、案件移送机制,及时通报违法违规行为,加强全链条监管和跨区域打击力度,切实形成执法合力。
(三)广泛发动群众,加大查处力度。各地、各有关部门要积极引导社会公众、企业职工全面查找身边的安全隐患,充分用好《xx省安全生产举报奖励办法》,通过12345热线,xx省安全生产举报平台,12350安全生产举报投诉热线和119消防举报电话等,及时举报各类风险隐患。加大对发生事故的企业的责任追究力度,依法严肃追究事故企业法定代表人、实际控制人、主要负责人、有关管理人员的责任。
各地各有关部门要严格按照工作的时间节点要求,及时收集、汇总并报送有关工作信息。请各地、各有关部门于2020年12月30日前将 工作总结 报省住房和城乡建设厅。
?
用图像处理技术研究油气田的航磁航放异常
杨胜雄,符溪,文鹏飞
杨胜雄(1964-),男,教授级高工,主要从事海洋地质地球物理、海洋矿产勘查研究。
注:本文曾发表于《海洋学报》,2004,26:75-81,本次出版有修改。
广州海洋地质调查局,广州 510760
摘要:地震勘探的BSR识别技术是发现海洋天然气水合物最经济、快捷、方便、有效的方法。在地震处理识别上,精确的子波处理是水合物地震资料处理中最关键的一个环节,用最小平方误差准则,即利用实际输出与期望输出的误差平方和为最小的条件,来确定反滤波因子,因此又称为最小平方子波整形。在地震处理程序中引入3种期望输出,即俞氏子波、雷克子波、Buttworth子波,对子波零相位化有较好的效果。根据上面的原理,开发了一套最小平方反滤波地震处理软件,对天然气水合物地震勘探资料进行试处理的结果表明,该软件在提高分辨率的同时,保持了较高的信噪比。
关键词:反褶积;最小平方反滤波;俞氏子波;雷克子波;Buttworth子波;天然气水合物
The Priciple of Least-Squares-Inverse Filtering and Its Application in Gas Hydrate
Yang Shengxiong,Fu Xi,Wen Pengfei
Guangzhou Marine Geological Survey,Guangzhou 510760,China
Abstract:The identification of the BSR is one of the best method for the prospecting of gas hydrate.In order to improve the temporal resolution of seismic section,the assignment of deconvolution is to suppression the ground filter in exploration.We adopt the least-squares error— the sum of all anticipant output error is the least condition,which decide the inverse factor.In the program we introduce three kinds of anticipant output— Yu-shi welet,Ricker welet,Buttworth welet.These welets help to improve the effect of zero-phase.According to the above principle,we develop a Least-squares inverse filtering program.The processing result indicates this method improves resolution and keep a higher signal-to-noise in the process of gaseous hydrocarbon.
Key words:deconvolution; Least-squares inverse filtering; Yu welet; Ricker welet; Buttworth welet; gas hydrate
0 引言
天然气水合物为冰状固体,俗称“可燃冰”,是一定的气体(甲烷、乙烷等)充填于水分子(呈三维笼状结构)在低温(< 10℃)、高压(>10 MPa)条件下产物,主要赋存于具有低温、高压环境的世界海洋大陆边缘和高纬度冻土里。在大陆边缘地区,碳氢气体随流体向上运移到水合物稳定带中,储存于深海底的沉积物空隙内。根据国外有关资料,海洋天然气水合物(天然气成分主要为甲烷,故也称甲烷水合物、甲烷气体水合物)通常埋藏于水深大于300 m的海底以下0~1 100 m处,矿层厚数十厘米至上百米,分布面积数万到数十万km2,单个海域甲烷气体量可达数万至几百万亿m3,即相当于我国天然气的总储量,甚或更多。世界各大洋中已发现的水合物总碳热量约为(1.8~2.6)×1016m3[1],大约相当于全世界已知煤、石油和天然气总储量的2倍。其总量之大足以取代日益枯竭的传统油气能源。
海底天然气水合物首先在钻探沉积物中发现,但大范围的探测需要靠声学物探方法,其中最主要的间接勘测技术是用地震勘探方法寻找似海底反射层(即BSR,bottom simulating reflection)。据统计,全世界海洋中已发现水合物地方有84处[2],其中利用地震探测的BSR推测的有48处,由BSR推测并取样的有10处,由BSR与测井探测的有8处,通过取样发现的有9处,利用其他方法(速度异常、化探异常、特征地貌等)推测的有9处。由此可见,通过地震方法识别发现的水合物赋存地区占绝大多数,尤其利用地震勘探的BSR识别技术是发现水合物最经济、快捷、方便、有效的方法[3-7]。BSR具有“与海底近平行、与海底反射反相位、高波阻抗、强振幅、速度异常可达3.3 km/s约为沉积物2倍、其下波速减小”等特征。根据波形详细分析,可将BSR进一步细分三类:即强BSR (S-BSR)、弱BSR(W-BSR)和推测BSR(I-BSR)[5]。在地震处理识别上,精确的子波处理是水合物地震资料处理中最关键的一个环节[8-9],其功能在于压缩地震子波、提高地震资料的纵向分辨率,子波处理的好坏直接影响到对水合物的有效识别,主要目标是使波形零相位化,形成对称形状的子波,便于识别剖面上BSR反射的极性反转现象。由于BSR的特殊性,传统的子波反褶积方法进行子波处理存在信噪比和分辨率太低而难以识别的困难,利用最小平方反滤波方法可进一步改善这些缺点。
最小平方反滤波是最小平方滤波(或称维纳滤波、最佳滤波)在反滤波领域中的应用。最小平方滤波的基本思想在于设计一个滤波算子,用它把已知的输入信号转换为与给定的期望输出信号在最小平方误差的意义下是最佳接近的输出。设输入信号为x(t),它与待求的滤波因子h(t)相褶积得到实际输出y(t),即y(t)=x(t)·h(t)。由于种种原因,实际输出y(t)不可能与预先给定的期望输出 完全一样,只能要求二者最佳地接近。判断是否最佳接近的标准很多,最小平方误差准则是其中之一,即当二者的误差平方和为最小时,则意味着二者有最佳地接近。在这个意义下求出滤波因子h(t)所进行的滤波即为最小平方滤波。
若设计另一滤波器输入信号x(t)是某滤波器的输出,而期望输出 是该滤波器的输入,则按此思想求得的滤波因子a(t)即称为最小平方反滤波因子,用它进行的滤波是最小平方反滤波[10]。
1 数学原理
地震勘探反滤波“反”的是大地滤波[11]。大地滤波器的脉冲响应是地震子波,它必为物理可实现的。将地震子波作为反滤波的输入,则期望输出应是δ脉冲。为了不失一般性,可先设期望输出是窄脉冲d(t)。另外,反滤波因子一般是无限长的,但计算机中运算只能取有限项。设待求的反滤波因子a(t)的起始时刻为-m0,延续长度为m+1。即:
a(t)=(a(-m0),a(-m0+1),a(-m0+2),…, a(-m0+m))。
当已知输入——地震子波b(t)=(b(0),b(1),…,b(n))时,实际输出为
南海天然气水合物富集规律与开基础研究专集
实际输出与期望输出的误差平方和为
南海天然气水合物富集规律与开基础研究专集
要使Q为最小,数学上就是求Q的极值问题,即满足
南海天然气水合物富集规律与开基础研究专集
的滤波因子a(t)。
南海天然气水合物富集规律与开基础研究专集
因为:
南海天然气水合物富集规律与开基础研究专集
为地震子波的自相关函数,而
南海天然气水合物富集规律与开基础研究专集
为地震子波与期望输出的互相关函数,故式(1)可写为
南海天然气水合物富集规律与开基础研究专集
这是一个方程组,写成矩阵形式为
南海天然气水合物富集规律与开基础研究专集
式中利用了相关函数的对称性。该方程中,系数矩阵为一特殊的正定矩阵(托布里兹矩阵),它不但以主对角线为对称,也以次对角线对称,而且主对角线及与主对角线平行的直线上的元素均相同。
方程(2)或(3)称为最小平方反滤波的基本方程、正规方程或法方程,可以用专门的莱文森递推法求解。
利用上述基本方程求出的滤波因子有时称为脉冲整形滤波因子,因为在应用中它可以将输入子波变换为任意形状的期望输出,相当于对子波整形。
2 程序描述
根据不同的要求,在程序中用的期望输出的子波可有3种型式:
2.1 俞氏子波
俞氏子波即宽带雷克子波,其时间域表达式为
南海天然气水合物富集规律与开基础研究专集
其中参数p和q是低边和高边的频率界限。
2.2 雷克子波
雷克子波的波形为
南海天然气水合物富集规律与开基础研究专集
其中fm是峰值频率。
2.3 Butterworth子波
Butterworth子波是带通子波,其频率域表达式为
南海天然气水合物富集规律与开基础研究专集
南海天然气水合物富集规律与开基础研究专集
3 实现过程
首先根据公式(4)、 ( 5)、 ( 6)计算出期望子波d(t),然后计算输入子波的自相关函数:
南海天然气水合物富集规律与开基础研究专集
及输入子波与期望子波的互相关函数:
南海天然气水合物富集规律与开基础研究专集
最后将上两式代入(3)式,求解出a(t)即得反滤波因子。
4 实际资料试算
1999年,广州海洋地质调查局在西沙海槽区开展了甲烷水合物的前期试验性调查,发现多段具有极性反转、上部反射空白带、近似平行海底、地震速度局部增高等标志的似海底发射界面(BSR),累计达100多km[12]。利用最小平方反滤波方法进行子波处理,如图1所示,子波处理具体参数为算子长度400 ms,白噪比例3%。
图2为用传统子波反褶积方法处理的剖面。图3为用最小平方反滤波处理的剖面。从图中可以看出用最小平方反滤波处理的剖面,获得较高的信噪比和清晰的分辨率,由此可见,最小平方反滤波处理天然气水合物地震资料是有效的。
5 结语
通过地震方法识别发现的水合物赋存地区占绝大多数,尤其利用地震勘探的BSR识别技术是发现水合物最经济、快捷、方便、有效的方法。子波处理是天然气水合物地震资料处理中最关键的一个环节,其功能在于压缩地震子波、提高地震资料的纵向分辨率,子波处理的好坏直接影响到对水合物的有效识别。
传统的子波反褶积方法进行子波处理存在信噪比和分辨率太低而难以识别的困难,利用最小平方反滤波方法可进一步改善这些缺点。设计应用的最小平方反滤波可以使波形零相位化,形成对称形状的子波,便于识别剖面上的BSR反射的极性反转现象,从而提高处理结果的信噪比和分辨率。
图1 子波处理效果图
左图为原系统反褶积后的炮集,右图为最小平方反滤波处理后的炮集,新模块子波处理后波形明显零相位化有利于波形对比
图2 用传统子波反褶积方法处理的剖面
图3 用最小平方反滤波方法处理的剖面
在最小平方反滤波的基础上,对反褶积中的一些主要问题做了探讨,并把俞氏子波、雷克子波、Buttworth子波作为反褶积的期望输出,得到了理想的效果。
参考文献
[1]Kvenvolden K A,Gas Hydrate-Geological Perspective and Global Change,Rev[J].Geophys,1993.31:173-187.
[2]杨胜雄,张光学,张明.海洋天然气水合物综合勘测技术[C]//海洋高新技术发展研讨会论文集.北京:海洋出版社,2000:507-512.
[3]MacKay M E,Jarrard R D,Westbrook G K,et al.Shipboard Scientific Party of Ocean Drilling Program Leg 164,Origin of Botom-Simulating Reflectors:Geophysical Evidencefrom the Cascadia accretinary prism[J].Geology,1994,22:459-462.
[4]Singh S C,Minshull T A,Spence G D.Velocity Structure of a Gas Hydrate Reflector[J].Science,1993,260:204-207.
[5]Lee M W,Hutchinson D R,Agena W F,et al.Seismic Character of Gas Hydrates on the Southeastem U.S.Continental Margin,Mar[J].Geophys,Res,1994,16:163-184.
[6]Carcione J M,Tinivella U.Bottom-Simulating Reflectors:Seismic Velocities and AVO Effects[J].Geophysics,2000,65(1):54-67.
[7]Hunter J M,Miller R D,Doll W E,et al.Feasibility of High Resolution P-and S-We Seismic Reflection to Detect Methane Hydrate.Soc.Expl.Geophys.1999.
[8]俞寿朋.高分辨率地震勘探[M].北京:石油工业出版社, 1993:125.
[9]熊翥.地震数据数字处理应用技术[M].北京:石油工业出版社,1993:187.
[10]牟永光.地震勘探资料数字处理方法[M].北京:石油工业出版社,1981:85.
[11]程乾生.信号数字处理的数学原理:第二版[M].北京:石油工业出版社,1993:221.
[12]张光学,陈邦彦,杨胜雄,等.海洋天然气水合物地震学研究[C]//天然气水合物调查动态、勘探方法和成果研讨会论文集.广州海洋地质调查局:2001.
西南石油大学的学术研究
张玉君
(地质矿产部航空物探遥感中心,北京100083)
摘要:用图像处理技术对下述与油气田异常有关的问题进行了研究:快速提取高频弱磁异常,估算高频磁异常源的埋深,放射性异常性质的归一化处理,典型异常剖面的分析,以及油气远景评价,提出了4个有希望含油气的异常。经验证,这4个异常中有3个见到油气显示,其中1个为工业气流。
关键词:油气田,烟囱效应,图像处理,航放Th归一化处理,油气远景评价。
一、前言
近10年,非地震物探方法寻找油气田的工作越来越受到人们的重视[1-8],原因之一是地震勘探生产费用日益昂贵;另一方面,近10年航磁、航放测量技术发生了重大变化,航空光泵磁力仪的灵敏度从1nT提高到0.1~0.01nT,大体积方柱形NaI(Tl)晶体和数字电路被引入航空放射性测量仪,不仅使其灵敏度提高了10多倍,而且使强度测量被4道(K、Th、U及总道)或多道(256或512道)能谱测量所取代。这一切促使物探工作者在油气勘查中更加注意应用具有大面积低消耗特性的航空物探技术。
柴达木中部地区的高灵敏度航磁、航空伽马能谱测量飞行线距1km,飞行高度约90m;安装在双水獭型飞机上的航放、航磁综合站包括GAD-6型4道能谱仪、MAP-4型质子旋进磁力仪、磁带收录机及多普勒雷达、航空摄影两种导航定位设备。能谱仪使用了3箱NaI(T1)晶体,总体积为48L,磁力仪的灵敏度为0.5nT。
放射性伽马测量普查油气已有50多年的历史,实践表明,在油气田上方有偏低的放射性异常,并在油气构造边缘存在比本低高的异常峰值。19年美国Donovan T.J.等人在Cement油田发现了高频磁异常[13],10多年来人们公认了这种与油气田相关的高频磁异常[9]的存在。尽管对产生这些异常的机制存在不少争议,但最被接受的说是烟囱效应,通常认为几乎所有的储油构造都从深部排出水份,烟囱效应将碳氢化合物和其他有机衍生物通过喷溢、溶液散逸、气体扩散等三种渗漏作用带到地表;地层中的液体和气体在从油、气层向上运移过程中,由于后成作用形成磁铁矿并沉淀放射性元素,从而形成可被航测发现的航磁航放异常,并作为判断地下赋存有碳氢化合物的标志。
提出用图像处理技术来研究这一问题,基于两点考虑:航空物探的大面积宏观数据通过图像处理可以快速获得直观结果;图像系统具备既适合位场数据(航磁)又适合统计学性质数据(航放)的处理功能。本文所做基础图像网度为317.5×317.5m2。除航磁、航放外还利用了陆地卫星影像 MSS(7、5、4波段)数据。
二、异常特征研究
1.高频弱磁异常的快速提取
柴达木盆地是我国重要的含油气盆地之一,在测区内已有多处井下油气显示,测区内人烟罕见,人文干扰较少,为研究油气田后成磁铁矿引起的高频弱磁异常特征的理想试验场地。
测区磁场动态范围为0~533 nT,在0~127 nT的低端仅有12个像素,占全图面的5/100000,并集中在东北部的局部负异常内,故取限幅拉伸的方法:
张玉君地质勘查新方法研究论文集
式中 z(x,y)为磁场异常,单位nT,l(x,y)为图像灰度级或称灰阶。
每一灰阶代表1.598 nT,可见经限幅拉伸处理,使磁原始图像保留了更多的弱异常信息,再按(2)式[10]制作立体阴影图(彩版附图9(A))。
张玉君地质勘查新方法研究论文集
式中 θ为光源方位角;φ为光源高度角;λ为磁面法线矢量与光源矢量的夹角。
测区磁场彩色立体阴影图显示出沿着从西北角到东南角对角线两侧成群地存在着高频弱磁异常,其宽度为1~2km,幅度为2~15 nT,在黑白图像上有3~20灰阶的变化。
文献[2]认为,钻井套管和井盖可能引起幅度为2~5 nT的异常,但其波长更短(<300m),也就是说在317.5×317.5m网度的图像上,套管和井盖所引起的异常仅表现为孤立点。为了突出有用弱磁异常,用图1中的模板通过褶积功能制作了水平二次导数图像,通过邻域滤波消除孤立异常点。
彩版附图9(B)为航磁二次导数、经归一化处理U及油气异常分布叠加图像。青色点群为航磁水平二次导数异常;红色为经归一化处理 U;绿色和蓝色椭圆为已知异常位置;红色椭圆为新发现的有希望异常。10个已知油气显示全部都具有高频弱磁异常,这有力地表明这种仅用数分钟即可完成的磁场二次水平导数图对于提取与油气田有关的高频异常具有重要意义。
图1 求导褶积模板
2.高频弱磁异常的磁源埋深
对磁场(经镜像对称扩边)进行快速富氏变换,然后对变换结果计算功率谱,从功率谱图像上取径向剖面值,最后做径向功率谱图(图2),为了做图方便直接用图像上的点数作为横坐标。
该谱图表明全图由低频功率谱Pl和高频功率谱Ph组成,低频部分在该区主要由前泥盆系变质岩的磁性引起,高频部分主要由浅部后成作用局部矿化引起,用参数法求磁源埋深[14]
张玉君地质勘查新方法研究论文集
取对数
张玉君地质勘查新方法研究论文集
图2 径向功率谱
如果用半对数坐标成图,式(4)为线性方程,-2H与-2h分别为低频段(1~8点)与高频段(12~50点)的直线斜率,lna与lnb分别为二直线的截距,△r为径向频率间隔。
r=2π/(点数×点距)(5)
本测区点数为512,点距为317.5 m,?r=38.65×10-6m,用最小二乘法求得二直线的截距和斜率分别为
a=254.1429,Kt=-13.5595, b=113.7212,Kh=-0.9182,
张玉君地质勘查新方法研究论文集
式中S被导入是因为图像处理所显示的对数功率谱值仅有相对意义,S的单位为m,其值可通过某已知异常源埋深求得。已知低频磁异常系由埋深为-5000至-15000m的前泥盆系变质岩引起,则
张玉君地质勘查新方法研究论文集
将H代入,S为0.0285~0.0855m。
张玉君地质勘查新方法研究论文集
即高频弱磁源埋深在0.3~1km之间。
3.航放图像对油气藏的反映
航放三元素合成图像[11-12]示于彩版附图9(C),叠加于其上的还有航磁二次水平导数异常。红为K,其含量变化为0~7.8%;绿为Th,其含量变化为0.0—39×10-6;蓝为U,其含量变化为0~14.9×10-6,彩版附图9(D)的上图为其色标;**点群为航磁水平二次导数异常。航放图像较之航磁水平二次导数对于油气显示的相关性要复杂得多,虽然并非所有已知油气显示都有清楚的航放异常,但还是有一些含油气构造反映较清楚,如彩版附图9(C)上的5号异常为已知鸭湖含油气穹隆。在双元素图像(彩版附图10(A),彩版附图9(D)的下图为其色标)上鸭湖构造也十分明显;在该图上部为R—Th,G—K,B—K合成图像,箭头所指为已知东台吉乃尔含油气构造;下部为R—Th,G—U,B—U合成图像,箭头所指为已知涩北1、2号含油气构造,它们都表现为周边高中间低的放射性异常。
如何增强或突出航放数据中与油气有关的信息,关键在于减少或压制岩性影响,为此,我们用了主分量分析(在图像处理中称之为KL变换)和Th归一化处理[15]。
彩版附图10(B)为航放三元素主分量分析(即KL变换)图像,彩版附图9(D)的上色标亦为其图例;图中a、b、c分别为第1、第2、第3主分量,以KL(1)、KL(2)、KL(3)表示,d为其合成图像。各主分量的组成为:
张玉君地质勘查新方法研究论文集
式中,Xk、XTh、X。分别代表某像素K、Th、U之含量值。
在第1主分量ξ1中以K为主,减少了Th的作用;由于在大部分沙岩、砾岩中K和Th有正相关性,故经此处理的KL(1)大大压制了岩性的影响,突出了K与Th不相关的地质过程的反映,如钾盐的沉积及烟囱效应等。
ξ2综合了K、Th、U的变化,反映全区地质环境,对研究油气局部异常作用不明显。
ξ3中以U为主,又减弱了Th和K的作用,大大压制了岩性影响,对研究油气局部异常很重要。
为减少岩性影响,根据文献[15],在整理地面或航空放射性测量数据时,常常除以Th含量值,称之为Th归一化处理。在做这种处理时,认为Th能较多地代表砂砾沉积物中岩性的变化,K、U与Th在这些沉积物中有一定正相关关系,除以Th值便减少了或压制了岩性的影响。我们的改进在于在归一化处理之前,先做相关分析,求出相关系数,再按相关系数做Th归一化处理。彩版附图10(C)即为K和U经归一化处理前后的对比图像,左边为原始图像,彩版附图9(D)的上图为其色标;右边为归一化处理结果。
表1为已知及新发现异常统计表,共8项特征:K原始图像、K经KL变换、K经Th归一化处理、U原始图像、U经KL变换、U经Th归一化处理、U晕圈及MSS(7、5、4波段)图像上的晕圈反映。已知10处油气显示中有8个(占80%)有明显或较明显的航放异常;其典型特征是:在Th归一化图上中心部位K低、U低和U高值的晕圈。
Th归一化处理的作用对下述含油气构造的异常十分明显:使V1、V2、V5的K高变为K低,使V1、V5的U高显著降低。故Th归一化处理对于统一异常性质有明显效果。
4.典型异常的剖面图像
以鸭湖(V2)和红三旱四号(V1)做为典型的已知异常进行剖面研究。
鸭湖异常有以下典型特征(彩版附图10(D)):
(1)U在归一化处理前后(彩版附图10(D)右图中之蓝色曲线)异常中心部位都是低值;
(2)K在异常中心部位原为高值,经归一化处理后也获低值(彩版附图10(D)右图中之红色曲线);
(3)在异常周围U有明显的高峰和晕圈现象;
(4)有明显的高频弱磁异常,且中心处更强(彩版附图10(D)右图中之绿色曲线)。
表1 已知及新发现异常统计表
红三旱四号的异常特征为:
(1)U在归一化处理前异常中心部位为强高值,经归一化处理后显著降低;
(2)K在归一化处理前为高值,经归一化处理后为低值;
(3)经归一化处理后在异常周围U有明显的高峰,反映出晕圈现象;
图3 红三旱四号地面能谱测量剖面
(4)也有明显的高频弱磁异常。
综合典型异常分析,与油气藏有关的航磁航放异常识别标志为:航磁局部高频弱变化;Th归一化处理后局部低钾、低铀(也有达不到低值);以及铀在异常周边的高值晕圈现象。
我们对红三旱四号异常进行了地面检查,用4道能谱仪进行了剖面测量,总长10km,点距100~200m。所获剖面(图3)与空中测量结果一致,在异常中心部位为K高、U高和Th高,从中心向两侧先降低后又升高。
三、对含油气远景评价的讨论
本测区内已知含油气构造或点共10处,如表1所列:红三旱四号(V1,气),鸭湖(V2,气),马新高点(V4,油),东台吉乃尔(V5,见工业油气流),南陵丘(V6,油气),驼峰山(V7,油气),涩北1号(V8,油气),涩北2号(V9,油气),涩聂北(V12,气),涩聂东(V3,气)。这10个已知油气显示无一例外都有明显的航磁水平二次导数异常。前8个有明显或较明显的航放异常显示,表现为在经Th归一化处理的K元素图像和U元素图像上为中心部位的低值及U的周边升高的晕圈现象。后两个已知区航放异常不够明显,主要原因是,这两个已知油气显示点处于钾盐类沉积丰富地段,钾引起的放射性变化强于与碳氢化合物有关的弱放射性异常,后者未能明显表现出来。故本测区已知油气显示构造或点与航磁水平二次导数异常的吻合率为100%,与航放K、U异常的吻合率为80%。
李芦玲等
李芦玲等.柴达木盆地中部地区航空磁测详查结果报告.地质矿产部航空物探遥感中心,1985。
曾用传统的方法对本测区含油气远景进行了评价,圈出8个最有希望的含油气区,图像处理也完全证实了这一评价。经图像处理,我们认为还应补充提出以下4个有希望的含油气异常区:(1)依克雅乌汝背斜构造(V3),位于鸭湖含油气背斜构造东30km,台吉乃尔含油气背斜北15km。其航磁航放、卫片异常均很典型,且与鸭湖异常极为相似,异常特征依据充分,可做为新发现的最有希望的含油气异常点。
(2)南陵丘西异常(V10),位于南陵丘已知含油气构造西约5km。有局部高频低幅磁异常、低钾、低铀及较明显可辨之周边闭合的高值U晕圈。可做为新发现有希望的含油气异常。
(3)洪上异常(V11),位于台吉乃尔洪积扇上部。除有局部高频弱磁异常外,有低U及隐约可见的周边U高值晕圈,可做为新发现较有希望的含油气异常。
(4)南八仙异常(V14),位于仙西南高点北缘。有局部高频弱磁、低钾和低铀异常。也可做为新发现之较有希望的含油气异常。
如前所述彩版附图9(B)上展示了l0处已知(蓝、绿、**椭圆)和4处新发现油气异常(红色椭圆)。并与归一化处理后之U(红)以及航磁水平二次导数异常(青点)叠加在一起。
上述远景评价于1990年完成,根据能源部1991年在柴达木中部地区进行的勘探成果,对比如下,上述4个含油气远景区中的3个见到了油气显示:即依克雅乌汝背斜构造(V3)于“伊中1”井见油气显示,洪上异常于“台中1”井见工业气流,南八仙异常于“仙3”井见油气显示。
本工作所预测的4个含油气远景区中有3个见到了油气显示,说明航磁、航放等综合参数通过图像处理所做油气田异常特征的研究是有效的。常规方法没有发现的异常,却由本方法预测,并已得到验证,说明该方法的价值。
参加野外验证的还有水恩海、史殿林、郭毅,屏幕图像均由杨星虹拍摄,能源部石油勘探开发科学研究院遥感地质所叶和飞给予了支持。在此表示诚挚的谢意。
参考文献
[1]Wold,R..郭武林整理.利用航磁和放射性测量直接寻找油气藏.地质科技动态,,(24):21~24.
[2]管志宁.利用航磁探测与化学剩磁有关的油气矿床.国外地质勘探技术,1985,(7):18~23.
[3]王家林,万明浩,金国英.磁测找油的进一步试验及有关问题的研究.石油地球物理勘探,1985,(20):3~404.
[4]郭玉琨编译.苏联地球物理直接找油方法概况.石油物探译丛,1985,(1):90~95.
[5]王秀文摘译.石油和天然气放射勘探的新远景.地质科技动态,,(18):17~20.
[6]赵改善编译.直接勘探油气田的放射性方法.石油物探译丛,1987,(6):95~104.
[7]李淑仪.核技术在石油天然气和地热勘探中的应用.国外地质勘探技术,1986,(4):22~27.
[8]王锡田编.油气勘查中用遥感方法检测烃类微渗漏.地质科技动态,1987,(11):13~16
[9]蔡振京.高精度大比例尺(1∶50000)航空物探在油气藏勘探中的应用.物探与化探,1989(13):401~410.
[10]Teskey,D.,Broome,J..Computer programs for production of shaded relief and stereo shaded relief maps.GSC paper.84—1 B,375—389,
[11]Zhang Yujun.Application of image processing techniques to airborne radiometric data.Abstract of the Second Symposium on Exploration Geophysics,Xian,China,525—526,1986
[12]Zhang Yujun.Digital image processing of airborne radiometric and magnetic data from central chaidam basin.An Overview of Exploration Geophysics in China,517—535,1989
[13]Donovan,T.J.,Forgey, R.L, Roberts, A.A..Aeromagnetic detection of diagenetic magnetite over oil fields.Bulletin ofthe American Association ofPetroleum Geologists,63,245—248,19
[14]Donovan,T.J.,Brien, D.P..Bryan,J.G., Cunningham, K.I..Near surface magnetic indications of buried hydrocarbons.Aeromagnetic detection and separation of spurious signals, IGARSS' 87 Remote Sensing: understanding the earth as a system,219—232,1987
[15]Alton V.Gallagher.Radiometrics—a practical exploration technigue.Weotern Oil Reporter'March,173,1982.
A STUDY OF AERO-MNETIC AND AERO.RADIOMETRIC ANOMALIES IN SOME OIL-GAS FIELDS BY IME PROCESSING TECHNIQUES
Zhang Yu jun
(Center of Aero-Geophysics and Remote Sensing, Ministry of Geology and Mineral Resources , Beijing 100083)
Abstract
This work represents the results of study of the following problemsby image processing techniques: the quick extraction of weak magnetic anomalies with high frequency, the evaluation of depth for highfrequence magnetic anomalies,the normalization of radiometric anomalies, the analysis of typical anomalous profiles and the prediction of perspective anomalies to find oil and gas.Four new perspective anomalies for oil gas were discovered.The study had been finished at the beginning of 1990.Comparing with the results of exploration in 1991, we he been encouraged by the fact that not only on 3 out of the 4 anomalieas the oil and gas werefound, but also on one of them the gas was found.
Key words Oil-gas filed,The chimney effect,Image processing, The second holizontal gradient of magneticfield, The power spectrum, The Th normalization for aeroradiometrics, The perspective evaluation for oil-gas.
原载《地球物理学报》,1994,Vol.37,No.1。
GIS技术在国内的研究现状及其发展趋势
截至2016年3月底,学校设有1个新能源和非常规油气研究院,各级科研基地平台共计91个,包括国家重点实验室1个、联合国援建技术中心1个、国家工程实验室、工程中心(协作)3个、产业技术创新战略联盟2个、国家级大学科技园1个、国家级技术转移示范机构1个,国际合作实验室2个,省部级重点实验室(工程技术研究中心)27个、省级实验科研基地3个,厅局级及横向合作科研基地46个,校级研究中心(所)5个。
2014年,学校成立世界上首个“海洋非成岩天然气水合物固态流化开实验室”。2015年西油与川大联合共建测井实验室。 西南石油大学作为实体建设的科研基地(平台)情况表序号名称级别依托单位1 油气藏地质及开发工程国家重点实验室(西南石油大学、成都理工大学) 国家级 石工院 2 低渗透油气田勘探开发国家工程实验室(协作) 国家级 石工院 3 油气钻井技术国家工程实验室(协作,含3个研究室) 国家级 石工院、机电院 4 国家能源高含硫气藏开研发中心(硫沉积评价技术研究所) 国家级 石工院 5 煤层气产业技术创新战略联盟 国家级 石工院 6 二氧化碳捕集、利用与封存(CCUS)产业技术创新战略联盟 国家级 石工院 7 国家级大学科技园(西南石油大学) 国家级 学校 8 国家技术转移示范机构(西南石油大学) 国家级 学校 9 中美联合数据工程与数据分析实验室 国际合作 计科院 10 油井完井技术中心(联合国援建) 国际合作 石工院 11 石油天然气装备教育部重点实验室(西南石油大学) 教育部(省部共建) 机电院 12 天然气开发教育部工程研究中心(西南石油大学) 教育部(部级) 石工院 13 油田化学教育部工程研究中心(西南石油大学) 教育部(部级) 化工院 14 沉积盆地与油气重点实验室(沉积地质研究中心) 国土部(部级) 地科院 15 天然气地质四川省重点实验室 省科技厅(省级) 地科院 16 油气田应用化学四川省重点实验室 省科技厅(省级) 化工院 17 能量转换与储存先进材料国际科技合作基地 省科技厅(省级) 材料院 18 油气消防四川省重点实验室 省科技厅(省级) 石工院 19 四川省天然气开发与开研究实验基地 省科技厅(省级) 石工院 20 四川石油天然气发展研究中心 省教育厅、社科联(省级) 学校 21 能源安全与文化普及基地 四川省社科联 马院 22 四川省不锈钢工程技术研究中心 省科技厅(省级) 材料院 23 四川省页岩气勘探开发协同创新中心 省教育厅(省级) 石工院 24 四川省石油天然气装备技术协同创新中心 省教育厅(省级) 机电院 25 四川省海洋天然气水合物开发协同创新中心 省教育厅(省级) 石工院 26 四川省页岩气与环境协同创新中心 省教育厅(省级) 地科院 27 中国石油石油管重点实验室-石油管力学和环境行为重点研究室 集团公司级 石工院 28 中国石油钻井工程重点实验室-钻井液重点研究室 集团公司级 石工院 29 中国石油钻井工程重点实验室-欠平衡钻井研究室 集团公司级 石工院 30 中国石油天然气成藏与开发重点实验室-特殊气藏开发研究室 集团公司级 石工院 31 中国海洋石油(海上油田)提高收率重点实验室 集团公司级 石工院 32 中国石油高含硫气藏开先导试验基地—西南石油大学研究室 集团公司级 石工院 33 中国石油油气藏改造重点实验室-西南石油大学压裂酸化数值模拟研究室 集团公司级 石工院 34 中国石油油气储运重点实验室-西南石油大学复杂天然气集输研究室 集团公司级 石工院 35 中国石油HSE重点实验室—西南石油大学研究室 集团公司级 化工院 36 中国石油碳酸盐岩重点实验室沉积—成藏研究室 集团公司级 地科院 37 中国石油钻井工程重点实验室钻头研究室 集团公司级 机电院 38 中国石油物探重点实验室页岩气地球物理研究室 集团公司级 地科院 39 中国石油测井重点实验室工程测井研究室 集团公司级 地科院 40 海洋非成岩天然气水合物固态流化开实验室 集团公司级 石工院/机电院 41 四川省高校岩石破碎学与钻头研究实验室 省教育厅(厅级) 机电院 42 四川省高校天然气开重点实验室 省教育厅(厅级) 石工院 43 四川省高校测控技术与自动化研究室 省教育厅(厅级) 电信院 44 四川省高校石油工程测井实验室 省教育厅(厅级) 石工院 45 四川省高校石油工程计算机模拟技术重点实验室 省教育厅(厅级) 计科院 46 四川省高校石油与天然气加工重点实验室(自筹) 省教育厅(厅级) 化工院 47 四川省高校油气田材料重点实验室 省教育厅(厅级) 材料院 48 四川省高校结构工程重点实验室 省教育厅(厅级) 土建院 49 四川省环境保护油气田污染防治与环境安全重点实验室 省环保厅(厅级) 化工院 研究领域 序号研究领域特色及主要研究方向一 石油与天然气工程 1.低渗透油气藏开发理论与方法 2.复杂油气藏压裂酸化理论与应用技术 3.裂缝性油气藏开发理论与方法 4.有水气藏开发理论与方法 5.高含水期油藏开发理论与方法 6.油气藏流体相态研究与特殊气藏开发理论及配套技术 7.注气提高收率理论及配套技术 8.恶劣条件油藏聚合物驱提高收率技术 9.油工艺技术 10.复杂非常规油气藏数值模拟理论和方法研究 11.非常规天然气储层成因与描述技术 12.储层损害与储层保护 13.欠平衡钻井技术研究 14.油气井固井理论与实验研究 15.管柱力学 16.工程岩石力学 17.完井方法 18.钻井液处理剂作用机理及钻井液化学 19.深井复杂井与特殊工艺井钻井技术 20.水射流研究与应用 21.石油工程测井及应用 22.钻井信息、仿真与最优化 23.油气管道仿真及优化技术 24.油气管道完整性评价技术 25.天然气管道储气及调峰技术 二 地质与地质工程 1.碳酸盐岩沉积储层地质学 2.油气层保护矿物岩石学 3.油气藏地球化学及成藏理论 4.储层描述与储层分布预测 5.剩余油分布研究 6.碳酸盐岩储层研究 7.新型电法非地震勘探系列技术研究 8.非线号处理及其在地球物理资料处理中的应用 9.层序地层学理论及其在油气勘探开发中的应用 10.碳酸盐岩测井评价技术 11.低孔低渗油藏评价技术 12.油藏整体描述技术 13.油气层保护的地质评价与研究 14.古应力场数值模拟与分析 15.裂缝预测 16.深部油层油后期地质效应 17.石油微生物研究 18.微生物造岩成丘研究 三 机械工程 1.机械现代设计理论及方法研究 2.现代制造技术及方法研究 3.岩石破碎与钻头研究 4.钻工具及设备研制 5.特殊油工艺方法及设备研究 6.石油装备与工具基础理论研究与产品开发 7.石油机械系统计算机仿真研究 8.软件开发 四 化学工程与技术 1.油气井建井化学浆添加剂研发 2.油化学 3.驱油剂研发及驱油体系研究 4.低渗透油藏开化学助剂研发 5.稠油开 6.石油天然气化学防腐 7.油气田环境污染控制及治理 8.石油天然气安全技术研究与评价 9.石油加工 10.天然气处理与加工 11.生物质能源研发 12.理论与计算化学 五 计算机科学与技术 1.石油信息化 2.计算机模拟与仿真 3.嵌入式系统 4.软件工程 5.数据库系统 六 建筑科学与工程 1.工程结构与系统现代设计理论 2.复杂结构与系统数值分析计算方法 3.结构系统安全性、耐久性、检测与维修加固 4.工程项目与企业的质量工程与卓越绩效评价 5.基于空间信息技术的结构健康检测理论与方法 6.岩土工程勘察与爆破技术 7.油气管道完整性评价与管理技术 8.储气系统、输配气管网规划设计与系统仿真 七 材料科学与工程 1.材料腐蚀机理与防护技术研究 2.油气田用高分子材料研究 3.油气田用无机非金属材料研究 4.材料表面工程研究 5.超细材料与应用研究 八 应用数学 1.应用微分方程与数值计算 2.应用概率统计 3.最优化与决策 4.石油工程仿真模拟计算 5.石油工程信息分析与处理 6.石油工程数值计算 九 仪器科学与技术 1.油气测试计量及标准化技术 2.油气检测与自动化装置 3.传感器及无损检测技术 4.油气智能测控系统 5.智能化仪器及计算机测控技术 6.智能结构系统与仪器 十 石油工程管理
管理科学与工程
工商管理
应用经济学 1.油藏经营管理 2.石油人力管理 3.石油与天然气工程项目管理 4. 石油与天然气工程技术经济及管理 5. 石油与天然气工程系统管理和优化 6. 管理科学理论、方法及应用 7. 工业工程与管理工程 8. 信息管理与企业信息化 9. 物流与供应链管理 10. 现代企业管理理论、方法及应用 11. 现代营销理论与营销实践 12. 人力管理 13. 石油技术经济及管理 14.会计与财务管理 15.石油天然气经济研究 16.石油产业组织创新研究 17.企业理论研究 18.农林经济研究 十 一 马克思主义理论
社会学 1.马克思主义与当代中国现实研究 2.马克思主义中国化理论研究 3.马克思主义基本原理运用研究 4.马克思主义基本理论 5.思想政治教育与管理 6.思想政治教育原理与方法 7.公共组织与人力管理 8.行政管理理论与实践 9.社会工作与管理 10.应用社会学 十二 法学 1.民商法学 2.刑事法学 3.经济法学 4.环境保护法学 5.国际法学 6.法理、行政法学 十三 外国语学及应用语言研究 1.外语教育理论与实践 2.翻译理论与实践 3.跨文化交际 4.英语教育 5.语言学 十四 体育学 1.体育教育训练学 2.体育人文社会科学 3.体育管理 科研成果 截至2016年3月底,学校先后承担国家杰出青年科学基金、优秀青年科学基金、自然科学基金,国家“3”、“863”、科技攻关(支撑)、科技重大专项,国家社科基金,教育部重点项目、新世纪优秀人才、教育部博士点基金,四川省杰出青年学术技术带头人基金等省部级以上项目2069项;获得包括国家科技进步特等奖、国家科技进步一等奖、国家科技进步发明二等奖在内的省部级以上奖励390多项。2015年学校实到科研经费3.56亿元。 “十一五”以来,发表论文13593篇,专著339部。
“十一五”期间,学校共申请专利2120项,其中发明专利1305项,实用新型专利815项,学校共授权专利1140项,其中发明专利569项,实用新型专利571项。 国家科技进步奖(十二五期间) 序号成果名称等级时间1 5000万吨级特低渗透-致密油气田勘探开发与重大理论技术创新 一 2015 2 海上稠油聚合物驱提高收率关键技术及应用 二 2015 3 超深水半潜式钻井平台“海洋石油981”研发与应用 特等 2014 4 大型复杂储层高精度测井处理解释系统CIFLog及其工业化应用 二 2014 5 鄂尔多斯盆地中部延长组下组合找油突破的勘探理论与关键技术 二 2013 6 特大型超深高含硫气田安全高效开发技术及工业化应用 特等 2012 7 超高温钻井流体技术及工业化应用 二 2012 国家技术发明奖 序号成果名称等级时间1 碳酸盐岩油气藏转向酸压技术与工业化应用 二 2013 ESI国际高被引学术论文序号单位姓名论文名称期刊名称级别出版年份1 理学院 田俊康 Improveddelaypartitioningmethodtostability
analysisforneuralnetworkswithdiscreteand
distributedtime-varyingdelays. AppliedMathematicsandComputation
233(2014)152–164 ESI 2014年 科研经费 西南石油大学科研经费情况(单位:亿元人民币)年份金额2008年全年实到科研经费两亿多元2009年3.07亿元2010年3.7亿元2011年4.2亿元2012年4.67亿元2013年4.6亿元2014年4.3亿(以上资料来源: ) 学术期刊 《西南石油大学学报(自然科学版)》
《西南石油大学学报(自然科学版)》前身为《西南石油学院学报》,创刊于1960年,是经国家教育部、科技部和新闻出版总署批准、由西南石油大学主办、以报道石油科技为主的学术性期刊。为中文核心期刊,2004年获教育部优秀科技期刊一等奖,2008年获“中国高校优秀期刊”称号。已被中国国外著名数据库Elsevier、美国石油文摘(PA)、美国化学文摘(CA)、剑桥科学文摘(CSA)、俄罗斯文摘杂志(AJ)、日本科学技术社数据库,以及中国国内大型数据库CPA、《中国学术期刊(光盘版)》、《中国科技论文统计与分析》、《中国科学引文数据库》、《中国石油文摘》等收录。主要刊登石油专业领域中具有创造性或创新性的学术与技术论文、基础理论研究论文、前沿问题的讨论与争鸣,突出反映石油天然气工业中的新理论、新方法、新工艺、新技术。
《西南石油大学学报》(社会科学版)
《西南石油大学学报》(社会科学版)是西南石油大学主办的综合性学术理论刊物、《CNKI 中国知网》收录期刊、《中国核心期刊(遴选)数据库》收录期刊、《中文科技期刊数据库(全文版)》收录期刊、《中国期刊网》全文入网期刊、《万方数据-数字化期刊群》全文入网期刊、《中国学术期刊综合评价数据库》来源期刊。主要刊登能源发展研究、政治学与社会学、法学、文史哲等学科领域的研究及应用中有独到见解或创新性的学术论文。 馆藏 据2016年3月学校图书馆信息显示,该校图书馆由成都校区图书馆和南充校区图书馆两部分组成。南充校区图书馆由应用技术学院管理。
馆藏以石油天然气文献为特色,理、工、管、经、文、法、教等不同学科协调发展。纸本图书183万册,电子图书125万册,电子期刊3万种,订购印刷型期刊1834种,购买数据库40个。
图书馆与国家科技文献中心(NSTL)、高校人文社科文献中心(CASHL)、国家图书馆、中国科学院国家科学图书馆、教育部CALIS中心、科技部西南信息中心、中国石油信息所、四川大学图书馆、成都理工大学图书馆等文献机构进行馆际互借、文献代复制和代传递服务。与西南交通大学图书馆和中国石油大学图书馆的教育部科技查新站合作,在该馆建立科技查新代办站,直接为该校科研工作者提供查新服务。
图书馆结合该校的教学科研实际,自行研发多种服务类型的数据库系统平台:该校硕博士论文检索与提交系统、文献传递与咨询平台、远程访问系统、决策参考信息专题网站、图书馆事实数据库、图书馆读者问卷调查系统、教师教学参考园地等。
19 年,图书馆建成了以小型机SUN3000为主服务器的自动化集成管理系统,使图书馆的管理、访、编目、流通、期刊、OPAC等有关业务都实现了自动化。1999 年,建成以 JVC 光盘库 +AXIS 光盘塔为数据中心的图书馆光盘网络服务器系统。2008年,建成以Sun4900、Sun6130、浪潮AS1000为核心设备的存储网络系统,以及本地镜像数字图书馆服务系统,共计服务器系统10套,磁盘阵列容量达到40TB。图书馆工作人员开展各种学术研究与信息报道。已在正式出版的各级学术刊物及学术会议上发表研究论文200 多篇,其中 4 篇英文论文在国际学术会议上发表。参加和主持国家、省、部、局、校级科研项目20余项。正式出版论文集《新时期石油高校图书馆工作》等。
三维可视化技术在四川盆地油气勘探信息管理中的应用研究
0 引言
随着计算机技术的飞速发展、空间技术的日新月异及计算机图形学理论的日渐完善,GIS(Geographic Information System)技术也日趋成熟,并且逐渐被人们所认识和接受。近年来,GIS被世界各国普遍重视,尤其是“数字地球”概念的提出,使其核心技术GIS更为各国所关注。目前,以管理空间数据见长的GIS已经在全球变化与监测、军事、管理、城市规划、土地管理、环境研究、农作物估产、灾害预测、交通管理、矿产评价、文物保护、湿地制图以及部门等许多领域发挥着越来越重要的作用。当前GIS正处于急剧发展和变化之中,研究和总结GIS技术发展,对进一步开展GIS研究工作具有重要的指导意义。因此,本文就目前GIS技术的研究现状及未来发展趋势进行总结和分析。
1 GIS研究现状及其分析
1.1 GIS研究现状
世纪90年代以来,由于计算机技术的不断突破以及其它相关理论和技术的完善,GIS在全球得到了迅速的发展。在海量数据存储、处理、表达、显示及数据共享技术等方面都取得了显著的成效,其概括起来有以下几个方面[1]:①硬件系统用服务器/客户机结构,初步形成了网络化、分布式、多媒体GIS;②在GIS的设计中,提出了用“开放的CIS环境”的概念,最终以实现共享、数据共享为目标;③高度重视数据标准化与数据质量的问题,并已形成一些较为可行的数据标准;④面向对象的数据库管理系统已经问世,正在发展称之为“对象——关系DBMS(数据库管理系统)”;⑤以CIS为核心的“3S”技术的逐渐成熟,为与环境工作提供了空间数据新的工具和方法;⑥新的数学理论和工具用CIS,使其信息识别功能、空间分析功能得以增强等等。
在GIS技术不断发展下,目前GIS的应用已从基础信息管理与规划转向更复杂的区域开发、预测预报,与卫星遥感技术相结合用于全球监测,成为重要的决策工具。据有关部门估计,目前世界上常用的GIS软件己达400多种[2].国外较著名的GIS软件产品有[3]:Auotodesk系列产品、Arc/Info、MapInfo及其构件产品、Intergraph、Microstation等,还有Web环境下矢量地图发布的标准和规范,如XML、GML、SVG等等。我国GIS软件研制起步较晚,比较成熟的测绘软件主要有南方CASS,MapGIS,GeoStar,SuperMap等。尽管现存的GIS软件很多,但对于它的研究应用,归纳概括起来有二种情况:一是利用GIS系统处理用户的数据;二是在GIS的基础上,利用它的开发函数库二次开发用户专用的GIS软件。目前已成功应用包括管理、自动制图、设施管理、城市和区域规划、人口和商业管理、交通运输、石油和天然气、教育、军事等九大类别的一百多个领域。在美国及发达国家,GIS的应用遍及环境保护、灾害预测、城市规划建设、管理等众多领域。近年来,随着我国经济建设的迅速发展,加速了GIS应用的进程,在城市规划管理、交通运输、测绘、环保、农业等领域发挥r重要的作用,取得了良好的经济效益和社会效益。
1.2 当前GIS发展存在的主要问题
基于以上GIS技术现状研究,本文分析认为GIS技术在模型、数据结构等方面存在着不足,一定程度上制约了GIS技术的发展。
(1)数据结构方面存在的问题
目前通用的GIS主要有矢量、栅格或两者相加的混合系统,即使是混合系统实际上也是将两类数据分开存储,当需要执行不同的任务时用不同的数据形式。在矢量结构方面,其缺点是处理位置关系(包括相交、通过、包含等)相当费时,且缺乏与DEM和RS直接结合的能力。在栅格结构方面,存在着栅格数据分辨率低,精度差;难以建立地物间的拓扑关系;难以操作单个目标及栅格数据存贮量大等问题[4].
(2)GIS模型存在的问题
传统GIS模型是按照计算机的方法对客观世界地理空间不自然的分割和抽象,使得人们认知地理空间的认知模型与计算机中的数据模型不能形成良好的对应关系,难以表达复杂的地理实体,更难满足客观世界的整体特征要求。在GIS软件开发中,如果语义分割不合理,将难以有效表达地理空间实体间的关系,这就导致较深层次的分析、处理操作难以实现。随着GIS应用需求领域的不断开拓及计算机技术的迅速发展,对空间数据模型和空间数据结构提出了更高的要求,使得传统的地理空间数据模型力不从心,逐渐暴露其弊端。
目前,面向对象的数据模型一定程度上解决了传统GIS数据模型的某些不足,但是OODB(面向对象数据库)目前仍未在市场以及关键任务应用方面被广泛接受,因为OODB作为一个DBS还不太成熟,如缺少完全非过程性的查询语言以及视图、授权、动态模式更新和参数化性能协调等;且OODB与RDB之间缺少应有的兼容性,因而使得大量的已建立起来的庞大的RDB客户不敢轻易地去选择OODB.
(3)其他方面亟待解决的问题
当前,GIS正处在一个大变革时期,GIS的进一步发展还面临不少问题,主要表现在以下几个方面[5]:①GIS设计与实现的方法学问题。在GIS设计与实现过程中缺乏面向对象的认知方法学和面向对象的程序设计方法学的指导,导致GIS软件系统的可靠性和可维护性差;②GIS的功能问题。当前以数据集、存储、管理和查询检索功能为主的GIS,不能满足社会和区域可持续发展在空间分析、预测预报、决策支持等方面的要求,直接影响到GIS的应用效益和生命力;③三维GIS模型及可视化问题。目前大多数GIS软件的图形显示是基于二维平面的,即使是三维效果显示也是用DEM的方法来处理表达地形的起伏,涉及到地底下真三维的自然和人工现象显得无能为力。
2 GIS未来发展趋势
2.1数据管理方面
(1)多比例尺、多尺度和多维空间数据的表达[6]
对于多比例尺数据的显示,将运用影像金字塔技术、细节分层技术和地图综合等技术;而为了实现GIS的动态、实时和三维可视化,出现存储真三维坐标数据的3D GIS和真四维时空GIS,这其中涉及了空间数据的海量存储、时空数据处理与分析以及快速广域三维计算与显示等多项理论与技术[7].
(2)三库一体化的数据结构方向
空间数据库向着真正面向对象的数据模型和图形矢量库、影像栅格库和DEM格网库三库一体化数据结构的方向发展[8].这种三库一体化的数据结构改变了以图层为处理基础的组织方式,实现了直接面向空间实体的数据组织,使多源空间数据的录入与融合成为了可能,从而为GIS与遥感技术的集成创造了条件。
(3)基于空间数据仓库(Spatial Data warehouse)的海量空间数据管理的研究
空间数据量非常大,而且数据大都分散在、私人机构、公司的各个部门,数据的管理与使用就变得非常复杂,但这些空间数据又具有极大的科学价值和经济价值,因此大多数发达国家都比较重视空间数据仓库的建立工作,许多研究机构和部门都参与到空间数据仓库建立的研究工作。
(4)利用数据挖掘技术进行知识发现
空间数据挖掘是从空间数据库中抽取隐含的知识、空间关系以及其他非显式的包含在空间数据库中但以别的模式存在的信息供用户使用,这是GIS应用的较高层次。由于目前空间数据的组织与管理仍局限于二维、静态、单时相,且仍以图层为处理基础,因此,当前的GIS软件和空间数据库还不能有效地支持数据挖掘。
2.2技术集成方面
(1)“3S”集成
“3S”是GPS(全球定位系统)、RS(遥感)和GIS的简称,“3S”集成是指将遥感、空间定位系统和地理信息系统这三种对地观测技术有机地集成在一起。地理信息是一种信息流,RS、GPS和GIS中任何一个系统都只侧重于信息流特征中的一个方面,而不能满足准确、全面地描述地理信息流的要求。因此,无论从物质运动形式、地学信息的本质特征还是“3S”各自的技术特征来说,“3S”集成都是科技发展的必然结果。
目前,“3S”集成还仅限于两两结合方式,这是“3S”集成的初级和基础起步阶段,其核心是GIS与RS的结合。这种两两结合虽然优于单一系统,但是仍然存在以下缺陷。将“3S”进行集成从而形成一体化的信息技术体系是非常迫切的。这种集成包括空基“3S”集成和地基“3S”集成,即在硬件方面建立具有同步获取涉谱数据和空间数据的高重复观测能力的平台,而在软件方面使GIS支持数据封装,同时解决图形和图像数据的统一处理问题。
(2)GIS与虚拟现实技术的结合
虚拟现实(Virtual Reality)是一种最有效地模拟人在自然环境中视、听、动等行为的高级人机交互技术,是当代信息技术高速发展和集成的产物。从本质上说,虚拟现实就是一种先进的计算机用户接口,通过计算机建立一种仿真数字环境,将数据转换成图形、声音和接触感受,利用多种传感设备使用户“投入”到该环境中,用户可以如同在真实世界那样“处理”计算机系统所产生的虚拟物体。将虚拟和重建逼真的、可操作的地理三维实体,GIS用户在客观世界的虚拟环境中能更有效的管理、分析空间实体数据。因此,开发虚拟GIS已成为GIS发展的一大趋势。
(3)分布式技术、万维网与GIS的结合[9]
目前,随着Internet技术的迅猛发展,其应用已经深人到各行各业,作为与我们日常生活息息相关的GIS也不例外,它们的结合产生了web GIS.当前Web GIS系统已经得到迅速的发展,到1999年1月,仅在美国出现的这类系统就有23种之多。又由于客户端可能会用新的应用协议,因此也被认为是Internet GIS.
计算机网络技术的飞速发展,分布式计算的优势日益凸显,GIS与分布式技术结合也就成为必然,它们的结合即构成了分布式CIS.它就是指利用最先进的分布式计算技术来处理分布在网络上的异构多源的地理信息,集成网络上不同平台上的空间服务,构建一个物理上分布,逻辑上统一的GIS.它与传统GIS最大的区别在于它不是按照系统的应用类别、运行环境划分的,而是按照系统中的数据分布特征和针对其中数据处理的计算特征而分类的。
(4)移动通信技术与CIS的结合发展[10]
WAP/WML技术作为无线互联网领域的一个热点,已经显示了其巨大的应用前景和市场价值。WAP柳ML技术与GIS技术的结合产生了移动GIS(Mobile GIS)应用和无线定位服务LBS(Location一basedServices)。通过WAR/WML技术,移动用户几乎可以在任何地方、时间获得网络提供的各种服务。无线定位服务将提供一个机会使GIS突破其传统行业的角色而进人到主流的IT技术领域里。大多数的分析家都认为,到2010年,无线网络将成为全球数据传送的主要途径。GIS的未来将会由其机动性所决定。
当前用于地理信息交互的语言还不足以完成真正的“设备无关接口”的互操作。各种移动设备对于从地理信息服务器所获得的信息,其表现方式是各不相同的,用户输人方式也不相同。因此,对于不同的移动设备需要一种统一的标记语言。无线定位服务将提供一个机会使GIS突破其传统行业的角色而进人到主流的IT技术领域里:大多数的分析家都认为,到2010年,无线网络将成为全球数据传送的主要途径。GIS的未来将会由其机动性所决定。
(5)GIS与决策支持系统(DSS)的集成[11]
决策支持系统(Decision Support System,简称DSS)是以管理学、运筹学、控制论、行为科学和人下智能为基础,运用信息仿真和计算手段为基础,综合利用现有的各种数据库、信息和模型来决策者或决策分析人员解决结构化和半结构化问题,甚至非结构化问题的人机交互系统。
目前,绝大多数的GIS还仅限于图形的分析处理,缺乏对复杂空间问题的决策支持,而目前绝大多数的DSS则无法向决策者提供一个友好的可视化的决策环境。因此,将GIS与DSS相集成,最终形成空间决策支持系统(SDSS),借助GIS强大的空间数据处理分析功能,并在DSS中嵌入空间分析模块,从而决策者求解复杂的空间问题,这是GIS应用向较高层次的发展。其中SDSS中知识的表达、获取和知识推理以及模型库、知识库、数据库三库接口的设计是哑待解决的关键问题。
2.3 发展历程方面
自20世纪60年代世界上第一个GIS——加拿大地理信息系统(CGIS)问世以来,经过40年的发展,GIS经历了三个阶段的发展。目前,随着第三代互联网的提出与实施,以及计算机技术、数据库技术的飞速发展,GIS即将步入第四代GIS发展阶段。
第四代GIS软件将在数据组织、存储、检索和运算等方面发生革命性的变革。数据组织应该是面向空间实体的,空间位置只是实体众多属性中的一类,它应和其它属性有机地组织在一起并统一存放:“关系”概念和“关系运算”应该加以扩充,应该包括空间关系及其运算;传统的结构化查询语言应该扩充,把空间关系及其查询包括在里面;以倒排表为基础的数据库索引机制应该扩展,建立至少包括拓扑关系在内的新的索引机制;数据存储机制应该适应空间数据提取和计算的要求等。只有实现数据真正的一体化存储和处理,才能自由地、方便地、快速地实现人们所期望的处理功能。在功能上,第四代GIS软件应该具备支持数字地球(区域、城市)的能力,成为OS、DBMS之上的主要应用集成平台,它具有统一的海量存储、查询和分析处理能力、一定的三维和时序处理能力、强大的应用集成能力和灵活的操纵能力,且具有一定的虚拟现实表达。
3 结束语
通过以上对GIS现状及发展趋势的分析,可以看出,GIS作为信息产业的重要组成部分,正以前所未有的速度向前发展。把握当前GIS的技术发展现状及不足,有利于人们预见GIS的发展趋势,站在更高更远的角度去扬长避短,较好地促进GIS技术的快速发展。随着地理信息系统产业的建立和数字化住处产品在全世界的普及,GIS将深人到各行各业以至千家万户,成为人们生产、工作、学习和生活中不可缺少的工具和助手。
石油天然气行业的安全评价
唐先明1,2 曲寿利1 雷新华2
(1.中国石化石油勘探开发研究院,北京100083;2.中国地质大学(北京),北京100083)
摘要 在分析目前石油领域三维可视化技术应用局限性的基础上,给出了全球三维可视化系统构建流程和数据组织管理模式。以ArcSDE作为空间数据引擎,利用Oracle 10g建立四川盆地油气勘探海量空间数据库,基于三维可视化软件平台Skyline TerraSuite,利用功能强大的三维可视化开发平台TerraDeveloper,设计、开发基于全球三维模型的油气勘探信息集成管理平台。通过集成基础地理数据库、区域地质数据库、地面工程数据库、遥感影像库、地层数据库、断层数据和测井数据,该系统不仅提供了强大的油气勘探基础数据管理、三维地形建模以及模型的可视化功能,还为专业技术人员提供了一个可视化的分析、设计平台。
关键词 四川盆地 三维可视化 三维地理信息系统 油气勘探 全球导航
Application and Research of 3D Visualization Technique to Petroleum Exploration Information Management in Sichuan Basin
TANG Xian-ming1,2,QU Shou-li1,LEI Xin-hua2
(1.Exploration & Production Research lnstitute,SlNOPEC,Beijing100083;2.China University of Geosciences,Beijing100083)
Abstract Based on the analysis of the current shortcomings of 3D visualization lication in the fields of petroleum,the paper introduces the construction process and data structure of global 3D visualization system.By using ArcSDE as engine of spatial data and Oracle 10g,“Petroleum exploration geodatabase of Sichuan Basin”is established.Based on Skyline Terra Developer,the software system“3D petroleum exploration data management and integration platform based on 3D global model”is designed and established.By integrating geographical database,areal geology database,surface engineering database,remote sensing image database,stratigraphical database,fault data,logging database with 3D terrain modeling,the system realize such functions as data management for petroleum exploration,3D terrain modeling and the visualization of 3D geological model.It is a visualization platform that assists the design and analysis for the geologists and the technologists.
Key words Sichuan basin 3D visualization 3D geographic information system petroleum explorationglobal nigation
随着计算机图形图像软硬件技术的迅猛发展,三维地形可视化技术在越来越多的领域得到了广泛的应用,构建一个为多种专业人员提供共同工作、研究与交流的三维实时交互的虚拟全球地理环境逐渐由梦想成为现实。三维可视化技术在石油工业中已得到高度重视和普及应用,它充分利用了三维地震信息和地震属性,以人们易于感知的三维图形对各种复杂数据场和数据关系进行描述。
油气勘探是通过用不同的技术手段集各种野外原始地质资料,并经处理、解释形成成果资料,进而用各种科学方法进行盆地评价、圈闭评价和油气储藏评价,开展勘探规划部署、井位设计和地质综合研究工作,完成勘探科研和生产任务。在油气勘探过程中,各油田企业积累了海量的、异构的、多源的地理数据、勘探基础数据和成果数据,这些信息的综合应用对指导油田生产具有很重要的意义。利用三维GIS技术,基于“数字地球”将地表地理信息与地下地质信息一体化管理,构建一个分析、决策、规划及实施油气勘探开发研究的三维实时交互共享工作平台,能够有效地评估潜在的石油,及时、准确、直观地定位油气的空间分布及其特征,正确有效地开展部署勘探开发工作。
1 三维可视化技术的应用现状
迄今为止,三维地形的可视化技术分为两种,一种是面绘制技术,另一种是体绘制技术。在地质研究工作中,主要是用体绘制技术。三维地学模拟主要包括两大部分内容,即三维地质建模和可视化,其中前者是后者的基础,后者是前者的表现[1]。目前,在三维地震数据的可视化方面,已有多种成熟的商业软件系统推出,国外的有 EarthCube,Geoviz,gOcad,VoleGeo等,国内的有石油物探局的3DV和双狐公司的三维地震微机解释系统等。这些软件涉及地质建模、地震勘探、开评估、矿床模拟、规划设计和生产管理等领域,在功能上各有千秋,很难说哪一个更先进[2,3]。但是,它们主要是面向地质领域的专用系统,基于局部区域而非全球区域,对海量基础地理数据与遥感影像数据等的支持也较弱。基于这种情况,本文用面向对象的程序开发语言Visual C#,基于优秀的国外三维可视化软件平台Skyline,设计并开发基于全球三维模型的空间数据管理平台,集成管理四川盆地区域内海量的、异构的、多源、多尺度的基础地理数据、油气勘探基础数据和成果数据、遥感影像,实现流畅的油气勘探的三维地形展示和地质分析。
2 系统开发技术背景与基本流程
随着地学应用的深入,人们越来越多地要求基于全球角度和真三维空间来认知世界和处理问题。但三维空间是复杂的,包含的信息是海量的,需要集成三维可视化与三维空间对象管理功能,同时由于三维应用的巨大差异,必须用开放体系结构,实现用户定制功能。基于这种认识,Skyline TerraSuite在提供一般三维空间数据模型及其管理功能的基础上,允许针对特定应用领域动态扩展建模及分析功能插件,以适应特定的三维应用。整个TerraSuite软件体系如图1所示。
系统的实现分为4部分:地球三维场景构建、中心数据库建立、定制三维可视化环境和场景驱动与应用定制。
图1 Skyline TerraSuite软件体系
2.1 地球三维场景构建
场景构建是将要模拟的场景和对象通过数学方法表达成存储在计算机内的三维图形对象的集合。场景构建分为以下步骤:
(1)DEM数据集:收集工作区的各级比例尺等高线数据或各种分辨率的航空航天遥感影像立体像对,建立地域的数字高程模型(DEM)。
(2)DOM数据生成:利用地面控制点和DEM数据,对工作区的低、中、高分辨率遥感影像进行严密的精纠正后生成数字正射影像图(DOM)。
(3)DLG数据集:收集工作区的各级比例尺地形图、野外数据集,建立工作区的各级比例尺线划图(DLG)。
(4)GIS数据转换:将数据集阶段获得的DLG数据通过GIS工具转换为TerraBuilder能够接受的数据格式。
(5)数据建模:对一些油田地面建筑物、地标、油井或其他油田设备在3D MAX或MultiGen或TerraBuilder中进行建模。
(6)地球三维场景构建:将以上各种数据,导入到TerraBuilder中,创建一个现实影像的、地理的、精确的地球三维模型(MPT文件)。
2.2 中心数据库建立
基于全球三维模型的油气勘探信息集成管理平台是一个高度集成的应用系统,系统建设过程中必须充分考虑系统涉及的多专业图形、属性、影像、文字资料数据的一体化集成、系统数据库与系统软件功能的集成以及系统与网络环境的集成等关键问题。为实现功能的集成与扩展,考虑石油勘探开发数据的区域性、多维性、时序性、海量和异构的特点,拟用大型商用关系数据库Oracle10g和空间数据引擎ArcSDE集中管理这些海量数据,建立数据中心,易于解决数据共享、网络化集成、并发控制、跨平台运行及数据安全恢复机制等方面的难题。
2.3 定制三维可视化环境
在全球三维场景的基础上,可以叠加自己关心的专题信息,通过与数据库的接口,还能集成中心数据库存放的地表、地下多维、动态空间信息,从而创建一个令人激动的交互式三维可视化环境,来突出一个地区的特征,显示其功能、相互关系以及从一个独特的视点展示该地区。
2.4 场景驱动与应用定制
(1)三维可视化程序:通过API接口直接调用所建立的三维可视化环境,也可以根据三维场景的参数生成实时场景,动态加载图层,有助于对空间数据相互关系的直观理解。
(2)三维空间查询与交互:直接在三维可视化环境下,对存放在中心数据库的各种数据和场景实体提供交互式查询等操作,以提供一个动态的环境,为进一步空间决策服务。
(3)应用定制:利用TerraDeveloper软件开发包提供的各种ActiveX控件,可以构建自己的面向三维的应用程序,实现与其他系统的应用集成[4]。
3 系统总体设计
3.1 系统体系结构
根据系统的功能需求,系统在技术上要求具有业务变化的适应性、高度的安全性和大容量数据存储处理等特点,因而在系统的技术框架中用了3 层B(C)/AS/DS结构。与此同时,考虑到系统与其他专业系统之间的集成,拟用基于SOA(面向服务架构)和Web Services(Web服务)技术的应用集成技术,构建基于“数字地球”的地表地理信息与地下地质信息一体化管理服务平台。整个系统的体系结构如图2所示。
3.2 系统数据的组织形式
系统数据的组织形式是可视化系统的关键,其优劣将直接影响到场景绘制的效率。在基于全球三维模型的空间数据管理平台中,主要包括3部分数据:①场景数据,即场景环境包含的地形信息,通过影像处理而成,包含在.mpt文件中;②对象图形数据,即油气勘探对象图形信息,是由3D MAX等三维图像处理软件处理而成的三维模型;③对象属性数据,即油气勘探属息。所有关于对象的信息包含在.fly文件中,用基于层(Layer)的面向对象的场景数据组织形式。目前,系统集成的四川盆地区域的数据层主要有:
(1)DLG——数字线划图:全区不同比例尺土地覆盖状况、植被、道路、水系、居民地等图层。
图2 基于全球三维模型的油气勘探数据管理平台系统结构
(2)DEM——数字高程模型:全区不同比例尺数字高程模型数据。
(3)DOM——数字正射影像:全区不同比例尺、不同分辨率的彩色正射影像。
(4)DRG——数字栅格图:全区不同比例尺地形图栅格数据。
(5)全国地名数据。
(6)1:200000地质图。
(7)勘探基础数据:测网、矿井、三维探区。
(8)勘探成果数据:地震异常、一类进积、二类进积、礁体、生物礁、滩和相带等。
(9)构造数据:断层、等值线等(宣汉、通南巴)。
(10)井位数据。
(11)地面工程数据:天然气管道、道路。
3.3 系统功能模块
基于全球三维模型的油气勘探信息管理与集成系统分为石油勘探数据管理、三维基本操作、三维GIS导航查询、三维分析等模块。系统主界面如图3所示。
各个模块的具体功能如下:
(1)石油勘探数据管理:系统利用GIS技术、XML技术、空间数据库等技术对多尺度基础地理信息、勘探基础数据和成果数据、多分辨率遥感影像、各种图表和文字报告等地表地下信息进行一体化的存储和管理。实现了对地理底图、油气地质勘查所获取的资料和成果的录(导)入、转换、编辑及查询等功能。另外,系统还提供了目标实体超链接及关联服务,如与钻孔相关的试验表类属性数据与图形数据的关联存储管理功能,提供与钻孔相关的各种基本信息及试验结果等属息的查询等功能。
图3 基于全球三维模型的油气勘探数据管理平台系统界面
(2)三维基本操作功能:在全球三维场景中,实现以下功能:
放大、缩小、平移、旋转等三维基本功能;
选择对象、使物体居中、环绕浏览对象;
飞行或者跳转到指定对象;
获得场景中任何一点的经纬度坐标和高程值;
场景的点对象、线对象,可以实现不依赖试图比例缩放;
提供场景的快照和打印输出功能。
(3)三维GIS导航查询:在全球坐标系统上实现基础地理信息、地质数据及勘探数据的立体定位导航分析。
全球任意点定位和导航;
二维三维联动功能;
测距、求积、高程和剖面生成;
地表实体三维建模及多种属性管理;
可定制飞行路径和视角的三维浏览功能。可自己制定飞行的路线或选择预定义飞行路线进行三维飞行(图4)。
(4)三维分析功能:
图4 基于全球三维模型的油气勘探数据管理平台设置飞行路径
测量功能:测量距离(水平、垂直和随地形起伏3种方式)、面积;
区域对象选择:可以进行多边形框选进行对象选择,并可获得选中区域内的对象集,可统计区域内的实体数并形成分类列表;
剖面观察:对所选地区场景进行剖面观察,可分析出地表起伏状况;
等高线绘制:用矩形框选出指定范围,可以显示出该范围等高线示意图,并可随意设定等高线显示方式;
最佳路径分析:根据给定的参数,如放样间隔、上升的最大坡度、下降的最大坡度、允许的放样宽度等信息,依据地形的走势,自动解算出最佳的放样线路;
视线分析:根据地面拾取两点系统可以自动计算两点间的通视情况;
视域分析:在场景中任选一点和视角范围可以进行视域可见分析;
空间分析:突发的地点,选择一定半径,利用分析工具可以作出整个目标点的空间范围,以提供决策。
4 系统应用扩展
基于全球三维模型的油气勘探信息管理与集成系统由于用了组件技术、基于SOA(面向服务架构)和Web Services(Web服务)等技术,不仅提供了强大的地表与地下油气勘探信息数据管理、三维建模与模型的可视化、全球定位导航等功能,还可以进行系统扩展和专业系统集成,实现油气勘探开发的深度应用,如野外地质踏勘路径优选和工作安排、地震资料集观测系统设计和优化、探井地面井场位置优选及工程测算、开发井位部署规划及钻前工程分析、油气集输地面工程设计及方案优化、目标区块水电路讯规划设计及优化、全球定位系统集成和油田现场服务等。
5 结论
三维可视化技术在国内、外已经趋于成熟,但基于全球三维模型的三维地理信息系统(GIS)刚刚起步,尤其是缺少针对地表与地下油气勘探信息三维一体化管理的经典模式和成熟经验。本文基于Skyline TerraDeveloper所设计、开发的全球三维油气勘探信息管理与集成系统,就是一个成功的实践,重点研究了虚拟现实环境下交互式地表地下油气勘探信息管理系统,给出了一种交互式虚拟现实全球导航平台的系统构成方案和原型系统。整个系统可靠性好、易于移植、便于维护,并具有很强的空间分析功能。结合三维地质建模及可视化系统的研究现状、相关技术的发展走向以及实际工程实践的应用需求,笔者认为,需要进一步探索、研究并解决以下问题:
(1)研究并实现现有的基于全球三维模型的空间数据集成管理平台的地上和地下三维一体化无缝集成与可视化功能。
(2)不断丰富与其他地震三维分析软件的接口。
(3)研究并开发基于VRML/X3D技术的网络三维可视化系统,能够为社会大众、专业技术人员和地质科学家提供更加普遍的支持和服务奠定基础。
参考文献
[1]Simon W Houlding.3D Geoscience Modeling:Computer Techniques for Geological Characterization[M].Berlin:Springer-Verlag,1994.
[2]朱良峰,潘信,吴信才.三维地质建模及可视化系统的设计与开发[J].岩土力学,2006,27(5):828~832.
[3]姜素华,庄博,刘玉琴等.三维可视化技术在地震资料解释中的应用[J].中国海洋大学学报(自然科学版),2004,34(1):147~152.
[4]Skyline Software System Inc.TerraDeveloper paper[EB/OL].[2007-6-1]://.skylinesoft/.
一、石油天然气行业安全生产的特点
石油行业是由石油天然气的地质、钻井、试油、油(气)、井下作业、油气集输与加工处理、油气储运及工程建设等诸多生产环节构成的一个大的产业体系。该行业特点集中体现如下:
1. 作业条件艰苦
石油工业生产中,地质勘探、钻井、试油、油(气)、井下作业及工程建设等都是野外分散作业,劳动强度繁重,工作条件差,作业环境条件比较艰苦,有时还会受到洪水、大风和雷电等自然灾害的侵扰。因此,在石油天然气的开作业中,类似井喷、油气泄露着火等事故发生概率比较高,并时有重大恶故发生。
2. 原料、中间品和最终产品多为易燃易爆物质
石油行业的原料为原油、天然气,中间品和最终产品主要是处理后的原油、液化石油气和轻质油。这些产品一般都具有闪点低、爆炸上下极限较宽、易燃、易爆、有毒、易扩散、易流动、易蒸发泄漏、易聚积静电等特点。这就决定了石油行业安全生产中的潜在危险性和破坏性要比其他行业大。
3. 生产工艺复杂
石油工业复杂的生产结构决定了其多样性的生产工艺,从勘探到钻井,从开到集输,各个环节都渗透着工艺的危险性。例如,地震勘探及射孔要用和,测井要使用放射性元素;油气集输与初步加工处理不仅是在密闭状态下连续进行的,而且还有天然气压缩、高压储存、低温深冷分离等有较大危险性的生产工艺。至于油库和气库,由于大容积的储罐在此高度集中,油气收发作业频繁,所以是人所共知的高危险性作业场所。
生产环境的恶劣和工艺的复杂性都决定了安全管理的难度,管理制度的建立和落实同样影响到生产的正常运行,如何利用有限的管理实现、的管理效果也是目前各企业一直追求的目标。
二、企业对安全评价的基本要求
安全评价技术发展到今天已被越来越多的企业所接受,评价方法、手段、范围越来越趋于成熟、先进和全面。随着安全生产法律体系的逐步完善,企业开展安全评价工作就成为法律法规赋予的责任。那么,在准备进行安全评价时,石油企业对评价机构应该有什么要求呢? 把安全评价师站点加入收藏夹
1. 系统安全的要求
石油工业不论是上游产业还是下游产业都是一个连续的、密闭的、长周期的生产过程,不仅在生产工艺上强调生产过程中各个环节的合理匹配、各种参数的合理衔接,而且一系列用于生产过程的监测监控仪器仪表,用于保证安全生产的消防、劳动保护等设施构成了油气生产庞大复杂的操作系统,特别是油气处理和炼制生产工艺表现得尤为明显。
安全评价是利用安全理论、方法对某一生产单元进行系统地定性或定量评价,以说明评价对象的安全可靠程度。如果评价仅是对一个独立的、单一的装置就事论事地作出结论是毫无意义的。因此,石油行业安全评价应建立在“对象系统化和评价系统化”的认识基础上,充分熟悉评价对象的生产工艺,寻找影响系统安全的薄弱环节或关键点,尤其是对于一个工艺复杂、范围大、设备设施数量多的生产装置、工程而言,需要分流程、分部位,针对不同的设备设施,取一定的顺序进行具体的辨识和分析,特别是要分析、论证这些薄弱环节或关键点与系统的关系和严重程度,进而作出客观、科学的结论,提出相应的预防对策。同时,要充分利用已建的装置、工程项目和事故案例进行类析,全面剖析、验证拟建项目或已建工程的危险性和可靠性,提出相应的、合理的防范措施。
2. 经济的要求
石油天然气勘探开和炼制生产设施的前期投入和正常运行成本是比较大的。如果没有雄厚的资金保证,要保障安全生产的需要是不可能的。为了保证国有企业有改善劳动条件的资金,院曾于19年规定:“企业每年在固定资产更新和技术改造费用中提取10%~20%用于改善劳动条件”。1993年新的会计制度实行后,取消了这一规定。但新的财务制度规定:“企业在基本建设和技术改造过程中发生的劳动安全措施有关费用,直接计入在建工程成本,企业在生产过程中发生的劳动保护费用直接计入制造费用”。新制度使劳动安全措施经费不受任何比例限制,拓宽了费用来源。同时,《安全生产法》为安全投入提供了法律保障:生产经营单位必须在安全生产条件、劳动防护、安全生产培训和工伤保险方面投入足够的资金,对于因投人不足而导致事故的生产经营单位的决策机构、主要负责人、个体经营的投资人予以法律追究。
从理论上说,安全管理的经济效益应等于安全产出与安全成本之比。由于定量确定安全产出是困难的,那就可以通过确定安全成本来测量安全效益。由此可见,深入认识安全成本的内涵是十分必要的。理论计算和实践统计揭示了安全投入中预防费用与事故费用的关系,排除机会因素,可以得到明确的结论:预防费用的投入是最能产生安全的经济效益的。
但事实上作为建设项目的安全费用是生产成本的一部分,虽然从原则上讲,当安全投入与经济效益发生矛盾时应优先考虑安全投入,但在现实中,如果安全标准过高必将增大建设成本和生产成本。安全投资在短期内无法显示价值和企业过高的经济指标都是企业安全投入不足的原因。
3. 安全管理的要求
安全评价是现代安全管理中一项重要内容,弱化了以往的凭经验的传统安全管理,强化了企业系统安全管理,促进企业建立风险管理的意识。它帮助企业的安全管理由原来的纵向单一管理变为全员、全方位、全过程、全天候的系统化管理,延伸了安全管理、安全责任的范围和环节,对实现企业安全管理目标起到积极作用。
从目前国家要求的4个评价范围及评价内容上看,重点是对机具的状态和环境因素进行评价。如果从现代安全管理的理念要求,人—机—环境—管理,应该说是保证安全生产的完整要素。而且人的行为、管理的手段在我国现阶段是保障安全生产的重要因素,如果抛开这两个因素单一评价相对没有自由度的机具、环境因素,是没有现实意义的。
三、在安全评价过程中,企业与评价机构必须相互配合
生产企业借用的专业安全评价机构必须对本企业的安全生产现状有一个全面、系统地了解掌握,而评价机构又要比较客观、真实地反映评价对象的安全状况,二者之间既存在利益关系,又相辅相成。企业具有熟悉生产工艺、流程的一批专业技术人员,而专业评价机构又拥有一批掌握最新系统安全知识的评价师,因此,只有双方共同配合,才能作出既符合实际,又能满足企业安全管理需要的评价报告。
1. 调研阶段
评价机构在接到评价对象要求后,必须开展现场调研工作。企业应指派专人负责配合、协调,给调研人员详细介绍评价对象的基本情况,生产装置的工艺流程、关键部位、设备、物料、运行参数、安全组织机构、作业人员基本素质等情况,以及历次或同类生产装置已发生各类事故的情况。同时,为评价单位提供相应的书面资料及相关复印件等。调研阶段是否能够充分、详细地了解项目的基本情况是做好评价的基础。
2. 评价阶段
评价人员在收集了一定的资料后,按照评价导则要求进入分析研究、报告编写阶段。这里需要指出,对于评价单位编写的评价报告可能会由于现场调研不详细、现场出现变更、资料准备不准确等多种因素,出现报告与现场不符的情况。为了最真实地反映现场情况,企业应与评价机构充分沟通,将问题彻底解决在报告完成之前。
四、评价报告的审核阶段
报告的审核不仅是生产企业对评价机构的工作作出的综合评价,也是企业掌握评价对象安全生产现状或在初步设计、投入运行后应重点关注的问题。报告的审核阶段尽管时间比较短,但却是最重要的一个环节。而通常,评价机构比较关心的是报告能否通过。因此,企业和评价机构双方在既合作又制约的基础上,应把握以下几点:
1. 确定专家
专家的确定对生产企业来说至关重要。一般情况下,专家组应至少包括三方面的专家:来自生产单位的生产技术类专家、来自生产企业内部的安全管理类专家和来自生产企业外的安全专家。如果仅是安全管理类的专家,可能会淡化、模糊评价对象生产工艺、流程、设施等方面存在的问题。
2. 报告评审
报告的评审是要对报告的针对性、可信性进行评审,强调重点是否突出,内容是否翔实,关键数据引用是否正确。更多地是关注两头,特别是风险辨识、对策措施、建议和结论等章节,这是报告的核心,也是评审的重点。作为评价机构则应简明扼要地介绍评价报告的内容,突出重点即可,点明关键。
五、安全评价结果的应用
安全评价结果的应用是整个安全评价过程的最终行为,是否能够贯彻好评价结果是企业能否保障安全生产和员工生命安全的重点所在。有的企业将报告中所提的措施应用到现场,强化安全生产;而部分企业对安全评价的意见和建议视而不见,忽视报告的科学性和实用性。这里有多方面的因素,但最终导致评价建议措施不能得以实现,安全评价也就失去了自身的价值。
对于安全预评价的结论,通常是作为指导初步设计的依据,完善可行性研究报告的安全措施,把它作为初步设计的重要参考依据。不仅设计部门要进行论证、参考,企业也应将报告中的建议、措施仔细商讨,结合自身特点,判断是否符合实际情况,更好地将问题消灭在设计阶段;安全验收评价处于建设项目竣工、试生产运行正常后,通过试生产可以发现实际生产中涉及的安全问题,通过验收评价可以了解到预评价报告中的措施是否落实到初步设计中去,初步设计的方案是否落实到现场中去,为日后正常开工提供保障;对于安全现状评价更多的在于现场隐患和安全问题的查找,并结合隐患类型和性质给出危险等级,特别是对于危险度高且难于整改的问题,一般是根据报告中的评价内容,分步骤取措施,将风险进行分解、转移。
隐患整改势必涉及到资金投入,生产企业要把花钱买来的安全措施付诸于行动,应将评价结果向企业管理层、生产技术和安全主管部门、基层单位执行层和生产安全部门、评价对象基层单位讲清楚,做到心中有数,加强薄弱环节的预防措施,积极整改存在的问题,这对落实安全责任必将起到积极的作用。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。