天然气动态压力正常值_天然气动态压力低的原因有哪些呢为什么引起的
1.引起潜水泵转子上下窜动的原因有哪些?包括电气方面的,机械方面的。
2.煤储层和煤层气的储存
3.天然气燃气灶打不着火什么原因?
4.汽车发动机熄火有哪些原因?
5.汽车油耗高有那些原因什么引起的
6.血压忽高忽低是何原因?应该怎么预防呢?
7.人类破坏环境造成的自然灾害
虽然这些气体有不同的性质,但它们都有一个共同的特征,即它们都有质量。根据牛顿万有引力定律,所有有质量的物体都会受到引力的影响。正因为如此,地球可以通过强大的引力将空气束缚在自身周围。与此同时,空气会在地球表面产生一定的压力,这就是所谓的大气压力。
标准大气压力为760毫米汞柱(1.013 10^5帕),相当于地球表面每平方厘米1.0336千克。这看起来很可怕,但事实上,在空气条件下,所有方向的压力都是相等的,地球上的生物早就适应了这种压力,只有当大气压力消失时才会有大问题。
至于大气压力的真实存在,实际上有一个非常明显的例子。例如,有一个不牢固的空瓶子,比如空矿泉水瓶。当我们从瓶中抽出空气后,它会被压碎,因为内部压力失去了与外部大气压力的平衡。正常情况下,由于空瓶充满空气,空瓶内外的气压相等。当我们从空瓶中抽出空气时,空瓶内的气压会下降。在这种情况下,外界空气会在大气压力的作用下流入瓶子,从而产生空气被真空强烈吸收的错觉。
既然知道真空根本没有吸收空气的能力,那么“为什么地球的空气没有被太空中的真空环境吸走”这个问题的答案就变得清晰了。顺便说一句,尽管太空中的真空环境不会从地球吸取空气,但由于太阳风,地球大气层每年损失近10万吨空气(主要是氢气和氦气)。
然而,由于氢和氦是宇宙中最常见的元素,当地球在太空中运动时,它会不时捕获这些气体。同时,一些坠入地球大气层的小天体也会给地球带来一些补充,所以地球上的空气总量将保持动态平衡。
引起潜水泵转子上下窜动的原因有哪些?包括电气方面的,机械方面的。
流量计有那几个种类,流量计如何选择,下面有具体介绍:流量计种类,流量计选型,流量计价格,流量计原理,流量计安装,流量计厂家是使用者一直很关注的问题。流量是一个动态量.其测量过程与流体流动状态、流体的物理性质、流体的工作条件、流量计前后直管段的长度等有关。因此确定流量测量方法、选择流量仪表,都要综合考虑上述因素的影响.才能达到理想的测量要求。
通常常用的自祐仪表中的气体流量计分为以下几个种类:
1.速度式流量计,速度式流量计是以测量管道内流量的平均速度u来测量流量的仪表。 由于测量速度的方法很多,所以速度式流量计根据被测物理量的不 同,有很多种不同的测量原理。
2.差压式流量计是通过安装于是工业管道中流量检测元件产生的差压,将已知流体条件和检测件与管道的几何尺寸来计差压式流量计算流量计。差压式流量计由一次检测件及二次仪表(差压转换器或变送器和流量显示仪表)组成。以检测件形式划分差压式流量计分类,有孔板流量计、文丘里流量计、均速管流量计等。二次仪表为各种机械、电子、机电一体式差压式流量计、差压变送器及流量显示仪表。差压式流量仪表是流量仪表大家族中应用最广泛的一中流量仪表,目前国内外已系列化、通用化、标准化,差压式流量计既可单独测量流量参数,也可测量其它参数(压力、物位、密度)等。差压式流量计的检测件按其作用原理可分为:节流装置、水利阻力、动压头式、动压头增益及射流式、以及离心式等几大类。检测件有标准化型式或非标准两大类。标准型检测元件是以标准文件设计、制造、安装和使用,无需经实流标定即可确定其流量值和估算测量误差。而非标型检测元件一般尚未列入国际标准中检测元件。差压式流量计也是应用最广泛的一种流量仪表,在各种流量计使用量中占据首位。主要优点是:(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;(2)应用范围广泛,至今尚无任何一流量计可与之比拟;(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。主要缺点是:(1)测量精度普遍偏低:(2)范围度窄,一般仅3:1~4:1;(3)现场安装条件要求高;(4)压损大(指孔板、喷嘴等)。
3.容积式流量计容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类。它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。容积式流量计按其测量元件分类:有椭圆齿轮流量计、旋转活塞流量计、往复活塞流量计、圆盘流量计、湿式气体计及膜盒式气体计、液封转筒式流量计等。主要优点:(1)计量精度高;(2)安装管道条件对计量精度没有影响;(3)可用于高粘度液体的测量;(4)范围度宽;(5)直读式仪表无需外部能源可直接获得累计,总量,清晰明了,操作简便。主要缺点:(1)结果复杂,体积庞大;(2)被测介质种类、口径、介质工作状态局限性较大;(3)不适用于高、低温场合;(4)大部分仪表只适用于洁净单相流体;(5)产生噪声及振动。
4.浮子流量计,又称转子流量计,是变面积式流量计的一种,在一根由下向上扩大的垂直锥管中,圆形横截面的浮子的重力是由液体动力承受的,从而使浮子可以在锥管内自由地上升和下降。浮子流量计是继差压式流量计之后应用较广泛的一类流量计,适用于微小流量监测。主要优点:(1)结构简单,使用方便;(2)适用于小管径和低流速;(3)压力损失较低。缺点:耐压力低,有玻璃管易碎。
5.涡轮流量计是属于速度式流量计中主要品种,它的结构由多叶片的转子(涡轮)感应流体平均流速,从而计量出流量或总流量的仪表。其结构由传感器和显示仪两部分组成,有分体式和一体式两种。涡轮流量计和容积式流量计、科奥利质量流量计统称为流量计中三类重复性、精度最佳的品种。目前已朝多品种,多系列化发展。主要优点:(1)精度高,在所有流量计仪表中属于最精确的流量仪表;(2)重复性好;(3)无零点漂移,抗干扰性好;(4)测量范围度宽;(5)结构紧凑。主要缺点:(1)不能长期保持校准特性;(2)流体物性对流量特性影响较大。
6. 涡衔流量计,涡衔流量计的结构是在流体中安放一根非流线型游涡发生体,当流体在游涡发生体两侧交替分离释放出两串规则交错排列的游涡的仪表。涡衔流量计一般按频率检出方式,划分有:应力式、应变式、电容式、热敏式、光电式及超声波式、振动式等。)涡衔流量计属于国内外新型流量仪表。主要优点:(1)结构简单牢固;(2)适用于多流体种类的场合流量;(3)有较高测量精度;(4)测量范围度宽,且压损小。主要缺点:(1)不适应于低雷诺数流体测量;(2)需较长直管段;(3)与涡轮流量计相比,仪表系数较低。
7.电磁流量计,电磁流量计由传感器及转换器及显示器等部分组成,电磁流量计根据法拉第电磁感应定律制成的一般测量导电流体的流量仪表。电磁流量计具有其它流量计不能比拟独特优势,特别适用如脏污流体及腐蚀流体的测量。电磁流量计在70-80年代由于电磁流量在技术上有重大突破,使它成为现代工业领域广泛应用的流量监测仪表。主要优点:(1)由于测量通道是段光滑直管,不会阻塞,特别适用于固体颗粒的液固二相流体,如纸浆、污水、泥浆等;(2)无压损,节能效果好;(3)不受流体的湿度、密度、粘度、压力和电导率变化影响;(4)流量范围大,口径范围宽;(5)适用于腐蚀性流体的测量。主要缺点:(1)不适用测量由释放的石油制品流体;(2)不适用气体、蒸汽及含有较大气泡的液体;(3)不适用高温场合。
8. 超声波流量计,超声波流量计是基于超声波在流动介质中传播的速度等于被测介质的平均流速和声波本身速度的几何和的原理而设计的。它也是由测流速来反映流量大小的。超声波流量计虽然在70年代才出现,但由于它可以制成非接触型式,并可与超声波水位计联动进行开口流量测量,对流体又不产生扰动和阻力,所以很受欢迎,是一种很有发展前途的流量计。
煤储层和煤层气的储存
潜水泵转子上下窜动可能由多种原因引起,包括电气和机械因素。以下是一些可能的原因:
电气方面:
电机过热:如果电机过热,可能会导致转子的膨胀,从而引发窜动。
电压不稳定:如果电压波动太大,可能会导致电机转速不稳,从而导致转子窜动。
绝缘破损:如果电机的绝缘破损,可能会导致电流流经不该流经的部位,从而导致转子窜动。
机械方面:
轴承磨损:轴承是保持转子稳定的关键部件,如果轴承磨损,可能会导致转子窜动。
泵轴弯曲或不平衡:如果泵轴弯曲或者不平衡,可能会引起转子在旋转时产生窜动。
泵体和电机之间的对中不准确:如果泵体和电机的对中不准确,可能会导致转子窜动。
潜水泵吸水不足或吸气:如果潜水泵吸水不足或吸气,可能会导致泵体内部压力失衡,从而引起转子窜动。
泵叶片磨损或损坏:如果泵叶片磨损或损坏,可能会改变水流的动态平衡,导致转子窜动。
要解决这个问题,可能需要专业人员对泵进行检查和维修。如果问题持续,可能需要更换部件或者整个潜水泵。
望采纳呦
天然气燃气灶打不着火什么原因?
煤层气是一种自生自储的非常规天然气。与常规气藏不同,对于煤层气藏来讲,煤层既是煤层气的源岩,又是煤层气的储集层。
(一)煤储层的特征
与常规天然气储层相比,煤层气储层具自身的特殊性,煤层气的赋存与常规天然气也明显不同。表4-6列出了煤储层与常规砂岩储层的异同点。
表4-6常规砂岩储层和煤储层的比较表
1.煤的孔隙结构特征
煤层是一种双重孔隙介质,属裂隙-孔隙型储层。图4-11是煤储层孔隙结构的理想模型,割理(cleat)将煤分割成若干基质块,基质块中包含有大量的微小孔隙,是气体储存的主要空间,其渗透性很低;割理是煤中的次要孔隙系统,但却是煤层中流体(气体和水)渗流的主要通道。孔隙和割理都是煤储层研究的重要内容。
图4-11煤的双重孔隙系统图 (据Warren和Root,1963)
割理是指煤层中近于垂直层面的天然裂隙,其成因有内生和外生(构造成因)之分,规模有大有小,与煤田地质学上的“裂隙”为同义词。在煤层气地质领域,一般将“割理”和“裂隙”通用。
根据孔隙-割理的物理测试结果,通常将煤中孔隙(包含割理)的空间尺度划分为:<0.01μm为微孔,0.01~0.1μm为小孔,0.1~1μm中孔,>1μm为大孔。
2.煤的割理系统
(1)割理的规模类型:割理的规模存在很大差异,小者数微米长,大者数米长。不同规模的割理在煤层中的发育程度相差较大。不同规模的割理,对气体的渗流起着不同的作用。张新民(2002)等按照割理的规模以及割理与煤层、煤岩类型及煤岩成分的关系对其进行了分类(表4-7)。
表4-7割理的规模类型及特征简述表
续表
(2)割理的三维几何形态:割理系统有互相大致垂直的两组,其中延伸长度大,且发育的一组叫面割理;被面割理横切的另一组叫端割理(图4-12)。
图4-12煤中割理系统图 (据张新民等,2002)
割理的长度在层面上可测量到,发育的面割理呈等间距分布,其长度变化范围很大(表4-7)。总体上,煤的光泽越亮、镜煤和亮煤越多、厚度越大,面割理越发育、割理高度越大。面割理高度小到几微米,大到几十厘米。
端割理一般与面割理是互相连通的。端割理的长度受面割理间距的控制,面割理间距越宽,端割理越长。端割理与面割理的高度受控因素相同,主要与煤岩类型和煤岩组分有关。割理的宽度与其规模有关。割理规模越大,宽度亦越大,变化范围一般为1μm至几厘米。
割理形态也是多姿多态的,在层面上主要有:①网状,这种割理连通性好,属极发育;②一组大致平行排列的面割理极发育,而端割理极少,这种割理属于发育,连通性属较好;③面割理呈短裂纹状或断续状,端割理少见,这种割理连通性差,属于较发育。剖面上,割理主要呈垂直于层理或微斜交层理平行排列。
3.煤层渗透率
宏观孔隙网络组成了连通性好的面割理和连通性稍差的端割理。面割理与端割理正交并垂直于煤层层面。割理是水和气流动的主要通道。被割理网络所包围的完整煤基质块体中的大部分孔隙为微孔隙,在这些煤中,流体主要通过扩散方式运移。故煤层的渗透性主要取决于煤层中割理的渗透性。根据火柴模型(thematchstickmodel)(Sawyer,1990;Harpalani和Chen,1997),割理的孔隙度(Φc)和渗透率(k)可近似为:
非常规油气资源
式中:a和b分别为割理的间距和一个割理孔径的宽度。
割理渗透性由割理密度(间距)、裂缝宽度和开启性、范围和连通性控制。这些因素又取决于煤级、煤质(灰分含量)、煤岩组分、煤层厚度、构造变形、煤化作用和原地压力(Ammosov和Eremin,1963;Close,1993;Laubach et al.,1998)。由于煤层具极强的可压缩性,原地压力可以影响储层渗透性和产量特征。通常,由于超压作用,煤层渗透性随着埋深的加大而减小。因此,美国大多数煤层气产自埋深小于1200m的煤层。煤阶对煤层的渗透性也有显著影响,由表4-8可看出,低煤阶煤层气藏的渗透率一般大于高煤阶煤层气藏。
表4-8世界部分中、低煤阶煤层气藏试井渗透率参数表
(据陈振宏,2007)
4.煤储层的吸附特征
(1)吸附理论:由于煤是一种多孔的固体,具有很大的内部表面积,因而具有吸附气体的能力。所谓吸附,是指气体以凝聚态或类液态被多孔介质所容纳的一种过程。吸附过程可分为物理吸附和化学吸附两种类型。物理吸附是由范德华力和静电力引起的,气体和固体之间的结合较微弱;物理吸附是快速的、可逆的。化学吸附是共价键引起的,气体和固体之间的结合力很强;化学吸附是缓慢的、不可逆的。
煤是一种优良的天然吸附剂,对各种气体具有很强的吸附能力,这是煤层气与常规储层储气机理不同的物质基础。煤吸附甲烷属物理吸附,理由主要是甲烷的吸附热比气化热低2~3倍,氮气和氢气的吸附也与甲烷一样,这表明煤对气体的吸附是无选择性的;大量的吸附试验证明,煤对甲烷等气体的吸附是快速的、可逆的。因此,可以用物理吸附模型来探讨煤吸附气体的机理。
对于物理吸附过程而言,吸附平衡是一个重要的概念。在一个封闭的系统里,固体颗粒表面上同时进行着吸附和解吸这样两种相反的过程。即一部分气体由于吸引力而被吸留在表面上而成吸附气相;被吸附住的气体分子,在热运动和振动的作用下,其动能增加到足以克服吸引力的束缚时,就会离开表面而重新进入游离气相。当这两种作用的速度相等(即单位时间内被固体颗粒表面吸留的气体分子数等于离开表面的分子数)时,在颗粒表面上的气体分子数目维持某一个定量,这时就称为吸附平衡。在平衡状态时,吸附剂所吸附的气体量随气体的温度、压力而变化。显然,这是一种动态平衡状态。即吸附量(V)是温度(t)和压力(p)的函数,可表示为
非常规油气资源
在上述函数关系式中,当温度一定时,称吸附等温线;当压力一定时,称吸附等压线。最常用的是吸附等温线,即在某一固定温度下,当达到吸附平衡时,吸附量(V)与游离气相压力(p)之间的关系曲线。在煤层气地质及勘探开发中,某一温度(通常为储层温度)下煤的吸附等温线对评价煤层的最大储气能力、预测煤层气含量、确定临界解吸压力、计算煤层气理论回收率等方面具有重要用途。
吸附等温线可以由实验室测试而获得。实际上实验测得的吸附等温线形状很多,大致可归纳为5种类型(图4-13)。图中纵坐标为吸附量a,横坐标p/p0为相对压力,p0是气体在吸附温度时的饱和蒸汽压,p是吸附平衡时气体的压力。等温线形态上的差异,反映了吸附剂与吸附质之间相互作用的差别。
图4-13物理吸附的5种类型等温线图 (据朱陟瑶等,1996)
第Ⅰ类吸附等温线的特征是,在较低相对压力时吸附量迅速增加,达到一定相对压力后吸附量趋于恒定的数值(极限吸附量)。极限吸附量有时表示单分子层饱和吸附量,对于微孔吸附剂则可能是将微孔充满的量。
第Ⅱ—Ⅴ类等温线是发生多分子层吸附和毛细凝结的结果。当吸附剂为非孔的或孔径很大可近似看作是非孔的时,吸附层数原则上可认为不受限制,等温线为Ⅱ、Ⅲ型的。当吸附剂为孔性的(不是微孔或不全是微孔的),吸附层数受孔大小限制,在p/p0→1时的吸附量近于将各种孔填满所需液态吸附剂的量,吸附等温线为Ⅳ、Ⅴ型的。Ⅱ和Ⅲ、Ⅳ和Ⅴ类型等温线的区别在于起始段曲线的斜率,Ⅱ和Ⅳ型在低压区曲线凸向吸附量轴,Ⅲ和Ⅴ型的是由小变大;在形状上,Ⅱ和Ⅳ型在低压区曲线凸向吸附量轴,Ⅲ和Ⅴ型则凸向压力轴。这些区别反映了吸附质与吸附剂表面作用的强弱。
从吸附等温线可以得到吸附质与吸附剂作用大小、吸附剂表面积、孔的大小及形状、孔径分布等信息。
由于煤储层的温度大都在10~50℃范围,远远高于甲烷的临界温度(-82.5712℃),煤的等温吸附试验一般也是在这一温度范围内进行的,因而不易发生多层吸附;煤是一种孔隙结构比较复杂、孔径分布不集中的多孔介质,不可能只在特定孔径的微孔结构中发生吸附,即吸附不是以微孔充填为主的过程(艾鲁尼,1992),故大多数煤的吸附等温线属Ⅰ类。
由于大多数煤的吸附等温线属Ⅰ类,故可认为煤吸附气体属于单分子层吸附,用Langmuir方程可以较好地描述绝大部分煤的吸附等温线。
Langrnuir(1916)从动力学的观点出发,提出了单分子层吸附理论,其基本假设条件是:①吸附平衡是动态平衡;②固体表面是均匀的;③被吸附分子间无相互作用力;④吸附作用仅形成单分子层。其数学表达式为
非常规油气资源
式中:V为吸附量(cm3/g);p为平衡气体压力(MPa);a为吸附常数,反映吸附剂(如煤的最大吸附能力,与温度、压力无关,而取决于吸附剂和吸附质的性质(m3/g);b为压力常数,取决于温度和吸附剂的性质(MPa-1)。
(2)煤对甲烷的吸附能力:张新民等(2002)从110余个煤样(来自从褐煤至无烟煤2号等9个煤级的煤层)的等温吸附实验结果得出在模拟地下煤储层条件的情况下,我国煤对甲烷的吸附能力(以最大吸附量,即Langmuir体积表征)较强,Langmuir体积(VL)值在11.25~51.81cm3/g之间变化(干燥无灰基)(不包括无烟煤1号)。其分布情况如图4-14所示,由于各煤级煤样的数量不均衡,各VL值区间的数据个数并不完全代表我国煤的VL值的分布趋势。
图4-14我国煤样Langmuir体积实测值分布直方图 (据张新民,2002)
(3)煤吸附能力的影响因素:煤的吸附能力受煤本身的物理、化学性质及煤体所处的温度、压力等条件的控制。实验结果表明,煤的吸附能力受煤变质程度、温度、水分含量影响较为显著。
煤变质程度对吸附能力的影响。煤对甲烷的吸附是一种发生在煤孔隙内表面上的物理过程,吸附能力受孔隙特征的影响。在煤变质过程中,孔隙在发生着变化,从而影响着煤的吸附能力。张新民等(2002)认为从褐煤至无烟煤2号煤的吸附能力是随着煤化作用的增加而增大(图4-15,图4-16和表4-9)。成岩作用阶段褐煤的吸附能力明显低于其他各变质阶段的煤,长焰煤至肥煤3个煤阶吸附量增加缓慢,焦煤之后,煤的吸附量开始快速增加,于无烟煤2号煤的吸附能力最强。
图4-1530℃等温吸附Langmuir体积与Rmax关系图
图4-16不同变质程度(Rmax)煤在45℃条件下的等温吸附曲线图
表4-9不同煤阶煤的吸附常数平均值(t=30℃,含平衡水分)
温度对煤吸附性能的影响。等温吸附实验一般采用的温度是30℃或煤储层温度。图4-17、图4-18为两个代表性的煤样分别在25℃、35℃、45℃和50℃条件下实验得出的等温吸附实验曲线。其中图4-17的煤样YQ四-15Rmax为2.69%,图3-18的煤样HJH-8Rmax为0.88%。由图4-17和图4-18可见,不同温度下煤的吸附能力有变化。总体的变化趋势是在压力不变的情况下,随着温度的升高,煤的吸附能力降低。用Langrnuir方程,根据各温度条件下获得的Langmuir体积和Langmuir压力,分别计算2MPa、8MPa、12MPa、20MPa压力下的吸附量;将同一压力不同温度的吸附量标绘在“温度-吸附量”坐标图中,即可用线性方程回归温度-吸附量经验公式,如图4-19和图4-20所示。
图4-17YQ四-15煤不同温度下的等温吸附实验曲线图 (据张新民,2002)
图4-18HJH-8煤不同温度下的等温吸附实验曲线图 (据张新民,2002)
图4-19YQ四-15煤在不同压力下温度与含气量关系图
图4-20HJH-8煤在不同压力下温度与含气量关系图
压力对煤吸附性能的影响。在其他条件不变时,随着压力的升高煤对甲烷的吸附能力增大(图4-21)。
图4-21随着压力的增大煤对甲烷的吸附能力也增大
图4-21a.在较高的温度下(虚线),煤中储存较少甲烷;当生气量大于煤的吸附能力时就发生运移;图4-21b.随着盆地的抬升冷却生气量降低(实线),从而导致煤层对甲烷不饱和。大气水中次生生物气的生成和热成因与生物成因气的运移可使煤层重新饱含甲烷。当煤层饱和时,解吸发生的压力就较高,则煤层气解吸只需较少的降压(排水),甲烷的产量也会较高。
水分对煤吸附性能的影响。张新民等(2002)试验表明,随着煤中水分的增加,Langmuri体积呈减小趋势,这主要是煤的内表面上可供甲烷气体分子“滞留”的有效吸附点位是一定的,煤中水分越高,可能占据的有效吸附点位就越多,相对留给甲烷分子“滞留”的有效点位就会减少,煤的饱和吸附量就会降低。
5.煤储层压力特征
煤储层压力是指煤层孔隙中的流体(包括气体和水)压力。煤储层压力对煤层气含量、气体赋存状态起着重要作用。同时,储层压力也是水和气体从煤的裂隙中流向井筒的能量。当降低煤储层压力,煤孔隙中吸附的气体开始解吸,向裂隙中扩散,在压力差作用下从裂隙向井筒流动。煤层气开采就是根据这一原理,通过排水降低储层压力而采气的。
实际上,原始煤储层压力差别较大。这是由于它受多种因素的影响,如区域水文地质条件、埋深、含气量、地应力等都可对煤储层压力造成影响。一般用压力梯度去衡量储层压力的大小,将储层压力划分为三种类型(表4-10)。正常储层压力应等于9.5~10.0kPa/m,即基本上等于静水压力梯度;大于10.0kPa/m为高压储层,小于9.5kPa/m为低压储层。
表4-10储层压力类型划分方案表
(二)煤层气的储存特征
一般说来,煤层气以3种状态存在于煤层之中:①吸附在煤孔隙的内表面上;②以游离态分布于煤的孔隙中,其中大部分存在于各类裂隙之中;③溶解于煤层内的地下水中。在煤化作用过程中生成的气体,首先满足吸附,然后是溶解和游离析出,在一定的温度和压力条件下,这3种状态的气体处于统一的动态平衡体系中。
上述这3种状态主要是针对甲烷而言,煤中的各种重烃组分是处于气态还是液态,这取决于煤储层的温度和气体压力。在当前开采深度和气体压力范围内,乙烷是气态,其他重烃呈液态。另外,除上述3种状态外,煤层中的气体还有可能以气体水合物晶体的形式存在,其条件是低温高压,如温度在0℃时,形成甲烷(CH4)水合物所需的压力为2.65MPa;温度在10℃时,则所需压力为7.87MPa,而在这样的条件只有在深海或永久冻土地带才能出现,在我国煤田内一般是不存在的。由于煤层气成分中乙烷以上的重烃含量很小,所以煤层中烃类物质的相态绝大部分为气态。
1.吸附气
煤层区别于常规天然气储层的主要特征是,大部分气体以吸附的方式储存于煤层中。经测算,吸附状态的气占煤中气体总量的80%~95%以上,具体比例取决于煤的变质程度、埋藏深度等因素(张新民等,1991)。这主要由于煤是一种多孔介质,煤中的孔隙大部分为直径小于50nm的微孔,因而使煤具有很大的内表面积,对气体分子产生很大的表面吸引力,所以具有很强的储气能力。在我国,中、高变质程度的烟煤和无烟煤中实测煤层气含量(干燥无灰基)为10~30cm3/g,最高可达36cm3/g,甚至更高;据测算,煤层的储气能力是同体积常规砂岩储气能力的2~3倍,如图4-22所示。
煤中吸附气含量,可以用直接法,通过煤样解吸试验得到;也可用以用间接法,通过Langmuir方程计算求得。
2.游离气
在气饱和的情况下,煤的孔隙和裂隙中充满着处于游离状态的气体。这部分气服从一般气体状态方程,由于甲烷分子的自由热运动,因而显现出气体压力。游离气的含量取决于煤的孔隙(裂隙)体积、温度、气体压力和甲烷的压缩系数,即
非常规油气资源
式中:Qy为游离气含量(cm3/g);Φ为单位质量煤的孔隙体积(cm3/g);p为气体压力(MPa);K为甲烷的压缩系数(MPa-1)。
图4-22煤与砂岩储气能力比较图 (据Kuuskvaa et al.,1989)
煤中游离气的含量不大。据前苏联科学院艾鲁尼等人的资料,中等变质程度的煤,在埋深300~1200m的范围内,其游离气仅占总含气量的5%~12%。
3.水溶气
水对甲烷有一定的溶解能力。根据煤炭科学研究总院西安分院在20世纪80年代后期进行的系统甲烷水溶试验的结果(表4-11),一般每升水可溶解零点几升到几升甲烷。与其他气体相比,甲烷在水中的溶解度是较小的。例如,在0℃和常压下,甲烷在水中的溶解度为0.055L/L,而相同条件下乙烷在水中的溶解度为0.098L/L,二氧化碳为1.713L/L,硫化氢为2.67L/L。可以看出,甲烷在水中的溶解度仅为二氧化碳的1/30,是相当低的。尽管如此,当溶解度低的甲烷溶于大量的地下水中,就会有巨大的气体从气藏中运移出去,引起甲烷的散失。在自然界,煤层常常为含水层,当储层压力低到足以使气体能够从煤中解吸出来时,甲烷会因地下水的运动而从煤层中运移出去。
表4-11不同温度、压力和不同矿化度下,水对甲烷的溶解度表
续表
(据张新民等,1991)
(三)煤中气体的流动
在自然界的原始状态下,煤层中的气体以承压状态存在着,气体处于平衡状态,可以将其看作是不发生流动的。但是,当人为活动影响时,如井下采掘活动,气井排水降压等,由于破坏了原始的压力平衡状态,会引起煤层中气体的流动。煤中气体穿过煤层孔隙介质的流动机制可以描述为3个相联系的过程(图4-23),即:
首先,由于压力降低使气体从煤基质孔隙的内表面上发生解吸;其次,穿过基质和微孔扩散到裂隙中,扩散作用是由于在基质与裂隙间存在的浓度差引起的;最后,在压力差作用下以达西流的方式在裂隙中渗流。这3种作用是一个互为前提并且连续进行的统一过程,不能割裂开来单独进行。
图4-23煤中气体流动的3个阶段图
1.解吸
当储层压力下降到低于临界解吸压力时,气体分子开始解吸,并遵循给定介质的等温吸附过程。解吸过程与时间有关。解吸过程进行的快慢可以用解吸时间来定性表示。所谓解吸时间,是指总吸附气量(包括残留气)的63.2%释放出来所需要的时间,一般用天或小时来表示。为使气体从不饱和气的煤层中开始解吸并产出,必须将地层压力降低到饱和点以下(图4-24)。
非常规油气资源
2.扩散流
气体穿过煤基质和微孔的扩散流动是由于体积扩散(分子与分子间的相互作用)、克努森(Knudson)扩散(分子与孔壁间的相互作用)和表面扩散(吸附的类液体状甲烷薄膜沿微孔隙壁的转移)共同作用的结果。
当孔隙直径大于气体分子的平均自由运动路程时,以体积扩散为主;当孔隙相对于气体分子的平均自由运动路程较小时,以克努森扩散为主。表面扩散受气体分子与孔壁表面之间的持续碰撞作用的控制,在这些表面上气体以吸附状态被传输。在表面扩散中一旦发生碰撞,气体分子就立即被吸附在孔壁上。对整个运移过程来说,表面扩散的作用是不大的。
各种类型的扩散流动都是气体分子随机运动的结果。图4-25可用来说明煤基质中甲烷扩散的过程。由于气体分子的随机运动,可以假定试图穿过某一虚拟内表面发生运动的两边气体的百分率相同。这样,由于靠近基质中心一侧(左)的甲烷浓度大于靠近割理一侧(右),所以试图从左向右穿越的分子数目就大于试图从右向左穿越的分子数目,于是总的运移方向是从左向右,即从煤基质块向割理流动。
图4-25煤基质中甲烷扩散的过程图
3.达西流
一般认为,在中孔(直径大于100nm)以上的孔隙和裂隙中,气体的流动为渗透,并且可能存在两种方式,即层流和紊流。由于煤层内孔隙的大小、形态、曲率非常复杂,具有明显的不均匀性,因此为了简化煤层中气体流动状态,通常认为煤层中气体流动属于层流渗透,且服从达西(Darcy)定律。即流体的流速v与其压力梯度成正比。它的简单表达式为:
非常规油气资源
式中:k为煤层的渗透率(10-3μm2);μ为流体的绝对黏度,对于甲烷,μ=1.08×10-5Pa·s; 为流体的压力梯度(Pa/m)。
(四)煤储层箱和含气特征
1.煤储层箱
各个盆地中煤储层的性质不同,具有较好油气通道和甜点的区域只占不到盆地生产区面积的10%。煤层气的经济可采要求众多地质要素聚集在一个适当的时间框架中,而且还须有可操作性及合适的环境。煤层气勘探开发的关键是识别煤储层箱。煤储层箱是指具有相似储层属性的封隔体,包括含气量、渗透率、水和气组分等。
2.煤层含气性特征
煤层含气性指煤层气含量。煤层气含量是指单位重量煤中所含煤层气的体积,单位为m3/t。
煤层气含量和煤层厚度有关,煤层厚度越大,稳定性越好,对煤层气的生成量和资源量规模起决定性作用。煤是煤层气的母质,在同等煤级条件下,煤层越厚生气量越大,煤层气丰度也越高。
煤层集生气层与储集层于一体,故煤的生气量与储集性能对煤的含气量有重要影响。煤层的生气量与成煤物质、煤变质程度有关;储气能力与煤的变质程度、煤岩成分、气体压力等因素有关,而压力又与煤储层的埋深、区域水文地质、气生成量有关;除煤层自身条件外,煤储层的保存条件对煤层气含量也有重要影响。这些诸多的影响因素以及复杂的相互配置关系造成煤层气含量的差异变化。而这些因素又可归结为4个方面:
(1)煤变质对煤层气含量的影响:煤变质对煤层气含量的影响,主要是通过对煤的生气量和煤的吸附能力的控制作用而体现的。研究表明,煤的生气量随着煤变质程度的增加而增大,且随着煤变质程度的提高,煤对甲烷的吸附能力逐渐增大。这说明在相同的保存条件和煤储层压力条件下,变质程度愈高,煤中吸附的甲烷愈多,即煤层气含量越高。
(2)煤储层埋藏深度对气含量的影响:据Langmuir吸附理论,随着压力的增大,煤对甲烷的吸附量呈非线性增加。随着埋藏深度的增大,煤层的压力增大,煤对甲烷的吸附能力增强,煤层含气量增大。
(3)水文地质与煤层气含量的关系:水动力对煤层气具有水力封闭和水力驱替、运移的双重作用。水力封闭作用有利于煤层气的保存,而水力驱替、运移作用则引起煤层气的逸散及在新条件下的聚集(常规圈闭)。一般讲,地下水压力大,煤层气含量高,反之则低;地下水的强径流带煤层气含量低,而滞流区则含量高。
(4)聚煤环境与煤层气含量的关系:含煤地层沉积环境主要有两类,即海陆过渡相沉积环境和陆相沉积环境。海陆过渡相形成的煤层,煤的还原程度高,镜质组含量通常较高,水体中的藻类、浮游动物往往残余成煤,形成富含烃类的沥青质体,构成亮褐煤和烟煤中微粒体的前身。在陆相沉积环境中形成的煤惰质组含量较高,惰质组由于炭化作用而变的惰性,富含碳,在煤化作用过程中挥发性物质少,生气量也少;而且煤层中藻类、浮游生物少见。由于镜质组的生气量大于惰质组,沥青质体生烃量比镜质组和壳质组高;因此,海陆交互沉积环境中形成的煤层的生气量、储气能力均大于陆相沉积环境中形成的煤层。
汽车发动机熄火有哪些原因?
可能有以下原因:
1、你的燃气表电池有没有电。可能是燃气表没电了,关闭了表中的电磁阀。
2、燃气表坏了。
3、燃气管堵塞。
4、调压器关闭 。?
5、 ?IC卡表过流量保护 。
6、找天然气公司的人员到现场维修。
燃气灶打不着火的时候要从一下几方面排查:
第一、有没有气,遇到煤气灶打不着火,首先要查看是否还有气,没有的话就要加气。
第二、电池有没有电,发现点不着火时,便要检查电池是否有电,如果没有,只需要换普通的一号电池就可以了。
第三、电路接触不良,主要是检查电池盒正负极有无生锈,线路有无接触不良,如果有,需把铁锈清除,将线路准确连接。
第四、过压保护,很多煤气灶有过压保护功能,一旦过压是不会启动的,这时就要换一个减压阀试一下。
基本特性
1、密度:指单位容积所含有的重量。液化石油气的气态密度为2.0—2.5kg/Nm 3。
2、比重:燃气的比重指单位容积的燃气所具有的密度,同相同状态下空气密度的比值,也叫相对密度或相对比重。
3、热值:单位容积燃气完全燃烧所放出的热量,成为该燃气的热值。
热值分为高热值和低热值。
高热值是指单位燃气完全燃烧后,其烟气被冷却到初始温度,其中的水蒸气以凝结水的状态排出时,所放出的全部热量。
低热值是指单位燃气完全燃烧后,其烟气被冷却到初始温度,其中的水蒸气以蒸气的状态排出时,所放出的全部热量。
4、理论空气量:指单位燃气按燃烧反应方程式完全燃烧所需要的最小空气量。
液化石油气燃烧所需空气量是天然气的3倍;是人工燃气的6倍。
5、膨胀与压缩
液态液化石油气的体积因温度升高而膨胀。在装满液化石油气的密闭容器中,随温度的升高,其体积迅速膨胀使压力很快升高到将容器爆破。如将水的体积膨胀系数设为1,液态液化石油气的体积膨胀系数大约是水的16倍。
6、饱和蒸气压
液态烃的饱和蒸气压,简称蒸气压,就是在一定温度下密闭容器中的液体及其蒸气压处于动态平衡时蒸气所表示的绝对压力。
饱和蒸气压与容器的大小及液量多少无关,与液化石油气的组份及温度有关。温度升高时,饱和蒸气压增大;轻组份比重组份的饱和蒸气压大。
7、气化潜热
气化潜热就是单位质量(1KG)的液体变成与其处于平衡状态的蒸气所吸收的热量。
物质从气态转变为液态,叫液化;气态转变为液态时,要放出热量。物质从液态转变为气态,叫气化。液态转变为气态时,要吸收热量。
液化石油气以液态储存,各种燃具使用的都是气态液化石油气。所以液化石油气经过从液态转变为气态的过程,称气化或蒸发,要吸热。当外界温度低不能供给气化或蒸发所需的热量时,液化石油气吸收自身的热量,使温度降低直至停止气化。
8、压力的分类
单位面积上的压力称作压力强度,简称压强。工程上把压强简称为压力。压力又分相对、绝对压力、负压力。
相对压力:用计量仪表测量出的那一部分压力,也叫表压力、正压力、工作压力。
绝对压力:大气压力与表压力之和,叫绝对压力,又叫实际压力。
负压力:用计量仪表测量出低于大气压力的那一部分压力,此时的相对压力因小于大气压力,因表示的数值为正,叫负压力。也叫真空度。
9、着火温度
燃料能连续燃烧的最低温度,称为着火温度。在常压(大气压)下,液化石油气的着火温度为365—460℃,天然气的着火温度为270—540℃,城市煤气着火温度为270—605℃。其着火温度比其它燃料要低的多,所以又叫易燃气体。
10、爆炸极限
可燃气体和空气的混合物遇明火而引起爆炸时的可燃气体浓度范围称为爆炸极限。在这种混合物中当可燃气体的含量减少到不能形成爆炸混合物时的那一含量,称为可燃气体的爆炸下限;而当可燃气体的含量一直增加到不能形成爆炸混合物时的那一含量,称为爆炸上限。
11、燃烧的热值
气体燃料中的可燃成分(氢、一氧化碳、碳氢化物、硫化氢)在一定条件下与氧发生激烈的氧化作用,并产生大量的热和光的物理化学反应过程叫做燃烧。
燃烧的三个条件:可燃物、助燃物(氧)、着火源缺一不可。
一标准立方米燃气完全燃烧所放出的热量,称为该燃气的热值。单位为KJ/m 3。
热值分为高热值和低热值。
一般焦炉煤气的低热值大约为16000—17000KJ/m3,天然气的是36000—46000 KJ/m 3,液化石油气的是88000—120000KJ/m 3。
按1KCAL=4.1868KJ 计算:
焦炉煤气的低热值约为3800—4060KCAL/m3;天然气的是8600—11000KCAL/m3;液化石油气的是21000—286000KCAL/m3。
以上内容参考:燃气
汽车油耗高有那些原因什么引起的
发动机熄火总是熄火原因是电路故障、器件故障、油路故障:
1、电路故障。这种可能就是在行驶过程中由于低压断电,熄火。这个时候可以主要检查一下点火和起动机的开关还有保险盒。低压线路短路造成熄火,这种情况下是断断续续的熄火,检查一下车的低压线路。
2、器件故障。这个问题一般是点火线圈,容电器,电子点火模块。就是一开始能起动,过一会就熄火,然后又能起动,又会熄火。
3、油路故障。汽油泵损坏,油管破裂,汽化器进油口堵塞,油箱没油。但是这种情况下汽车是可以再起动的,只是很难。
冬季保养问题:
冬季开始的时候,我相信有很多车主都遇到过这些情况,比如发动机不能启动,换挡时发动机熄火等。
发动机冷启动困难,主要原因就是发动机温度太低,所以我们只要让发动机保温,不让刺骨的寒风直接吹进发动机舱内,就可以避免打不着车。
在冬季停车时要注意车头的方向,最好让车头对着建筑物,利用建筑物来挡风,防止引擎被寒风吹袭而过冷。夜间停车时,可将车头对着朝阳方向,令清晨的第一缕阳光能照到车头上,帮助引擎升温,这样出车就容易多了。
血压忽高忽低是何原因?应该怎么预防呢?
积碳原因:
1、发动机积碳,车子长期的运作,汽油在燃烧过程中,难免会产生积碳和油泥,这些油泥和积碳如果不及时的清洁的话,就会导致汽车油耗升高。
2、火花塞故障,汽车火花塞的作用是用高压电产生电火花点燃混合气。如果损坏会使点火能量下降,混合气燃烧不均匀,就将导致车子提速减慢,油耗上升。
3、轮胎胎压失常,汽车轮胎的压力不正常,也会对汽车的油耗产生影响。胎压过低或胎面磨损严重时,轮胎跟路面的接触面积变大,摩擦增大,滚动阻力增大,油耗自然变高。
4、车上长期拉载重物,载重过大的车辆自重就会增加,汽车行驶压力也会加大,汽车油耗也会升高。
5、喷油嘴雾化效果不好,出现这个情况可能就是汽车喷油嘴堵塞了,导致汽车喷油嘴的效果受到很大影响,这样也会导致汽车油耗升高。
6、汽车传感器故障,也是导致汽车油耗升高的主要原因,当水温传感器出现故障的时候,这样让发动机误以为汽车属于冷车状态,会一直传递出喷油的信息,导致汽车油耗升高。
人类破坏环境造成的自然灾害
很多有高血压问题的朋友,都经常的测量自己的血压情况,但在测量血压的过程中,却往往会发现血压忽高忽低的情况,好的时候,血压在稳定达标状态,而在有些时候,却会出现血压飙升或血压过度的低,低血压的情况。血压这样忽高忽低的情况,到底是哪些原因引起的,又该如何加强血压的稳定控制呢?今天就来和大家聊一下这方面的话题。
血压剧烈波动,对健康危害更大对于高血压的控制,不能光强调降压,更应该强调血压的平稳控制。如果虽然知道自己高血压,也进行控制了,但血压总是高高低低,经常出现剧烈波动,对心血管健康的危害,往往比平稳的轻度高血压还要更大。
血压的过度飙升,会给心脑血管造成巨大压力,对于血液灌注的相关脏器,也会造成很大的压力,如果血压升高幅度太大,哪怕仅仅是一过性的,也有可能会诱发心梗、出血性脑卒中等疾病问题。
很多朋友只知道高血压很可怕,但降压过度,导致身体出现低血压也同样风险很高。血压过低会引起身体的反射性心跳加速,乏力,眩晕,甚至可能会引起休克,心律失常等问题都有可能由低血压所引起,而同样的,低血压如果不能及时得到纠正,同样也是诱发急性心脑血管疾病发作的重要风险因素。
而如果血压忽高忽低,有时候出现血压升高,甚至大大高于正常值,有时候出低血压,引发身体出现不适及心脑血管风险,这样的一种血压经常波动的情况,对于心脑血管造成的影响和危害则更大。因此,一定要在注意血压控制达标的同时,降低血压上下波动的幅度,稳定控制血压。
任何事情都不是无缘无故发生的。血压的高低波动,当然也是有一定原因的,如果明明已经注意了高血压的控制,但仍然经常出现血压忽高忽低的情况,不妨从以下几个方面查找原因,做好应对。
降压药物的不合理应用首先是药物的不合理应用。药物不合理应用包括很多方面,有的朋友害怕长期吃药有副作用,于是吃吃停停,吃药的时候血压得到了控制,而停药的时候,血压则再度出现升高,这样的情况,自然就会出现血压波动的情况。除此之外,降压药用药过于板,该减量服用时,没有及时合理的减量,就会造成血压降低过度,引起低血压的风险,这些不合理用药导致的血压波动,都是值得注意的。
很多高血压问题的朋友都需要服用降压药控制血压,但降压药的应用,一定要注意合理安全,合理用药一方面包括结合自身情况,长期应用降压药稳定控制血压,也包括当血压出现波动时,应该积极查找是否是由于服用药物所引起,及时的调整用药方案,加强血压的稳定控制。
情绪波动控制不好血压出现忽高忽低的问题,第二个应该考虑的原因是情绪的影响。想要稳控血压,保持平和的心态是非常重要的一个方面。情绪对于血压的波动影响,有时候容易被忽略,却正是由于情绪的剧烈波动,造成了血压的忽高忽低。
情绪会影响我们的自主神经兴奋性,导致交感神经和副交感神经之间的平衡被打破,而自主神经的紊乱,就会影响我们的血压水平。这种神经的兴奋性变化可能引起血压的骤然升高,也有可能引起血压的降低,特别是激烈的生气等情绪,对于引起血压忽然升高,甚至诱发重大心脑血管疾病的发生,都是值得注意的。
因此,对于有高血压问题的朋友,如果您的血压波动变化,正好与情绪的变化呈现相关性的话,那就应该考虑由于情绪变化而导致血压出现忽高忽低的原因,比如经常生气,血压就经常飙升,那么尽量地学会控制自己的情绪,保持平和乐观的心态,血压忽高忽低的问题,自然也就解决了。
年龄因素有影响随着年龄的衰老,一些有高血压问题的老年朋友,身体对于血压的调节机制会逐渐变弱,在这种情况下,就更容易出现血压的益处波动。比如说一些高龄的老年高血压朋友,当由卧位或坐位突然站立时,就容易出现体位性低血压的问题,而有一些老年高血压朋友,还会在餐后由于胃部血液的聚集而导致出现餐后低血压的问题,这些血压的波动风险,都与身体对于血压的调节能力逐渐衰弱有密切的关系,平常血压偏高不易控制,但还经常出现低血压的风险,这样的一些情况,都是导致心脑血管风险升高的一些影响因素。
对于老年人的身体血压调节能力下降,而导致的血压波动问题,可以结合具体的血压波动问题,来进行合理的调理控制,比如起床时有体位低血压问题的老年朋友,可以通过缓慢起身,起床前饮用一杯水补充血容量等方式,来减少低血压的发生几率;而对于有餐后低血压问题的朋友,少食多餐,餐后适度运动或活动等方式,则能够更好的避免血压的波动。
继发疾病因素影响血压出现忽高忽低的情况,还应该考虑相关疾病的影响。除了原发性的高血压,还有一些疾病原因会导致血压的波动导致继发性高血压或低血压问题的出现。而对于原来是原发性高血压问题的朋友,也有可能进一步出现继发性疾病,而导致血压的进一步升高,或者血压变得更难控制,比如有些有高血压问题的朋友,肾脏健康发生问题,出现肾实质变时,肾脏的健康问题,就会导致血压的进一步升高,而在比如说高血压患者,如果心血管健康出现问题,出现心血管的一些病变,如心衰,主动脉瓣狭窄等问题时,则可能引起继发性的低血压问题,这种情况下,出现血压忽高忽低的变化,也就不足为奇了。
针对继发性疾病原因导致的血压波动,除了仍然要积极的用降压药来控制血压以外,针对继发疾病进行调理治疗,控制疾病发展进程,也是加强血压稳定控制,减少血压忽高忽低的重要方面。
地球环境污染和破坏的九大现象
一、大气污染
大气污染的定义
在干洁的大气中,痕量气体的组成是微不足道的.但是在一定范围的大气中,出现了原来没有的微量物质,其数量和持续时间,都有可能对人、动物、植物及物品、材料产生不利影响和危害.当大气中污染物质的浓度达到有害程度,以至破坏生态系统和人类正常生存和发展的条件,对人或物造成危害的现象叫做大气污染.造成大气污染的原因,既有自然因素又有人为因素,尤其是人为因素,如工业废气、燃烧、汽车尾气和核爆炸等.随着人类经济活动和生产的迅速发展,在大量消耗能源的同时,同时也将大量的废气、烟尘物质排入大气,严重影响了大气环境的质量,特别是在人口稠密的城市和工业区域.所谓干洁空气是指在自然状态下的大气(由混合气体、水气和杂质组成)除去水气和杂质的空气,其主要成分是氮气,占78.09%;氧气,占20.94%;氩,占0.93%;其它各种含量不到0.1%的微量气体(如氖、氦、二氧化碳、氪).
大气污染物的分类
大气污染物主要可以分为两类,即天然污染物和人为污染物,引起公害的往往是人为污染物,它们主要来源于燃料燃烧和大规模的工矿企业.
颗粒物: 指大气中液体、固体状物质,又称尘.
硫氧化物: 是硫的氧化物的总称,包括二氧化硫,三氧化硫,三氧化二硫,一氧化硫等.
碳的氧化物: 主要包括二氧化碳和一氧化碳.
氮氧化物: 是氮的氧化物的总称,包括氧化亚氮,一氧化氮,二氧化氮,三氧化二氮等.
碳氢化合物: 是以碳元素和氢元素形成的化合物,如甲烷、乙烷等烃类气体.
其它有害物质: 如重金属类,含氟气体,含氯气体等等.
大气污染的危害
大气污染对气候的影响很大,大气污染排放的污染物对局部地区和全球气候都会产生一定影响,尤其对全球气候的影响,从长远的观点看,这种影响将是很严重的.
一是大气中二氧化碳的含量增加,燃料中含有各种复杂的成分,在燃烧后产生各种有害物质,即使不含杂质的燃料达到完全燃烧,也要产生水和二氧化碳,正因为燃料燃烧使大气中的二氧化碳浓度不断增加,破坏了自然界二氧化碳的平衡,以至可能引发“温室效应”,致使地球气温上升.二是臭氧层被破坏 .
大气被污染后,由于污染物质的来源、性质和持续时间的不同,被污染地区的气象条件、地理环境等因素的差别,以及人的年龄、健康状况的不同,对人体造成的危害也不尽相同.大气中的有害物质主要通过下述三个途径侵入人体造成危害:
(1)通过人的直接呼吸而进入人体;
(2)附着在食物上或溶于水中,使之随饮食而侵入人体;
(3)通过接触或刺激皮肤而进入到人体.其中通过呼吸而侵入人体是主要的途径,危害也最大.
大气污染对人的危害大致可分为急性中毒,慢性中毒,致癌三种.
大气层保护
许多环境问题是跨国界的,甚至是全球性的,如温室效应和臭氧层破坏等大气污染,需要世界各国的共同努力才能逐步解决.人们在70年代早期开始认识到氟氯烃可能对环境有害,并且开始寻找代替品.到了80年代中期,臭氧层破坏的证据已经日益清楚,采取共同行动的呼声也日益高涨.到了1987年,许多国家的代表汇集在加拿大第二大城市蒙特利尔,签署了《关于消耗臭氧层物质的蒙特利尔协定书》.这个协定书是对付世界环境公害的一个开创性的国际协定,目的是控制氟氯烃和其它破坏臭氧层的物质的消费量,保护地球的“外衣”,也保护人类自己.
经过修正后的蒙特利尔协定书是一个有约束力的国际协定.按照规定,工业国的氟氯烃和其他受限制物质的排放量必须立即减少,在2000年以前逐步完全停止使用这类物品.发展中国家在1996年以前可以继续有限度的增加这些物质的消费,然后就应当逐步减少,到2010年时必须完全停止使用这些有害物质.除了时间上的优惠以外,这一协定书还包含了两个对发展中国家有利的条款:一个是建立一项临时多边基金,帮助发展中国家采取代替氟氯烃的技术;另一个是技术转让条款,要求签字国把最好的技术按照“公平和最有利的条件”转让出去.
我国已加入了修正后的蒙特利尔协定书,并且制定了履行国际义务的国家行动方案,包括建立保护臭氧层组织管理机构,制定有关行业的管理规范,积极开展替代品和替代技术的研究,为企业的替代技术改造安排配套资金等等.
二、酸雨
有人认为酸雨是一场无声无息的危机,而且是有史以来冲击我们最严重的环境威胁,是一个看不见的敌人.这并非危言耸听.
随着工业化和能源消费增多,酸性排放物也日益增多,它们进入空气中,经过一系列作用就形成了酸雨.
人们对酸性排放物已经有了控制,但仍然还有酸雨现象.大气尘埃可能是造成酸雨问题的另一原因.
酸性排放物
自由大气里由于存在0.1~10μm范围的凝结核而造成了水蒸汽的凝结,然后通过碰并和聚结等过程进一步生长从而形成云滴和雨滴.在云内,云滴相互碰并或与气溶胶粒子碰并,同时吸收大气中气体污染物,在云滴内部发生化学反应,这个过程叫做污染物的云内清除或雨除.在雨滴下降过程中,雨滴冲刷着所经过空气中的气体和气溶胶,雨滴内部也会发生化学反应,这个过程叫污染物的云下清除或冲刷.这些过程也就是降水对大气中气态物质的颗粒物质的清除过程,酸化就是在这些过程中形成的.
大气尘埃
最近的发现表明,酸雨是比原来的想象要复杂得多的一种现象.研究得到的结果表明了大气中存在着的碱化合物出乎意料地起着关键性作用.碱通过中和酸性污染物而对酸雨的作用进行抵消.我们发现,人们把全部注意力都集中到大气中的酸性物质,掩盖了碱排放也已经有所下降这一事实.看来有许多因素正在减少大气中这些碱的含量,从而加剧了酸雨对生态的影响.具有讽喻意味的是,在这些因素中有几个正是各国政府为改善空气质量而采取的措施.
大气中的大多数碱都能在称为大气尘埃的空中粒子中找到.这些尘埃粒子富含碳酸钙和碳酸镁等矿物质,这些矿物质溶于水中就起碱的作用.大气尘埃粒子由多种来源共同形成.燃料的燃烧,以及水泥生产、采矿和金属冶炼等工业活动,都会产生含碱的粒子.建筑工地、农场和在未经铺砌的道路上车辆行驶也会造成尘埃粒子.
三、臭氧层破坏
臭氧层是地球最好的保护伞,它吸收了来自太阳的大部分紫外线.然而近二十年的科学研究和大气观测发现:每年春季南极大气中的臭氧层一直在变薄,事实上在极地大气中存在一个臭氧“洞”.
这种臭氧损耗现象是一种反常现象,这是否表明这一紫外线吸收层正处于全球性灾难呢?通过不断的科学研究,人们发现人类社会活动释放的物质严重的破坏了臭氧层,当然这种现象还受到这一地区独特的气象状态(极涡、寒冷的平流层温度、极地平流层云)的影响.
发现过程
英国南极测量局的大气科学家在南极进行了一项研究计划, 这一研究计划分别在地面和空中进行.球载仪器一般是检测该仪器所行进的大气的构成及其化学性质.陆基探测仪和星载探测仪则执行遥测任务.这些研究活动采取了国际合作方式.例如,1987年代表19个组织和四个国家的大约150名科学家和辅助人员聚会于智利的蓬塔阿雷纳斯,进行了一项规模空前的研究,即机载南极臭氧实验.这项实验表明1987年臭氧洞大小达到历史最大.这一发现震惊了科学界.
形成机理
南极“臭氧洞”的成因目前尚无定论,其中最为令人信服的当是污染物质学说.此外还有:美国宇航局汉普顿芝利中心Callis等人提出南极臭氧层的破坏与强烈的太阳活动有关;麻省理工学院的Tung等人认为是南极存在独特的大气环境造成冬末春初臭氧耗竭,根据大气动力学说,指出大量氯氟烃化合物的使用,以及南极初春没有足够阳光产生大量氧原子,并因此提出了不需要氧原子的循环机理.
通过分析我们似乎可以得出以下的主要观点:(1)南极"臭氧洞"是在南极春季特殊的温度和环流状况下由极地平流层云参与和非均相化学反应而引发产生的特殊现象.(2)极地旋涡等其它因素对气体成分输送的影响不是南极"臭氧洞"形成的决定因素,而只能影响臭氧洞的强度.(3)太阳周期变化通过光化学反应对南极"臭氧洞"强弱的影响可以忽略.
四、水污染
人类的活动会使大量的工业、农业和生活废弃物排入水中,使水受到污染.“水污染”的定义:水体因某种物质的介入,而导致其化学、物理、生物或者放射性等方面特征的改变,从而影响水的有效利用,危害人体健康或者破坏生态环境,造成水质恶化的现象称为水污染.
水的污染有两类:一类是自然污染;另一类是人为污染.当前对水体危害较大的是人为污染.水污染可根据污染杂质的不同而主要分为化学性污染、物理性污染和生物性污染三大类.
1、海水污染
污水、废渣、废油和化学物质源源不断地流入大海.在许多海域,倾倒混有石油的污水是非法的,但这种事仍时有发生,而真正的石油灾难是在巨型油轮泄漏或沉没时发生的.如今我们设法用化学品使水中石油沉淀以达到清除石油的目的.
向海洋倾倒化学和放射性废物的作法已持续多年.容器总有一天会腐蚀掉,有害物质便将进入海水中.我们对深层水与表层水的循环情况还了解不多,其过程或许比我们以前所想的要快.因此有害物质就会扩散到生物活动的水层中去.
2、地表水污染
五百多年以前,人们就认为饮用流经大城市的河水是危险的,而工业化,人口增长以及新的有毒化学品,使情况愈来愈糟.
排水系统的铺设和清洁剂的使用有增无减,使我们的水道和湖泊中磷酸盐含量日益增多.这种过度营养导致藻类迅猛繁殖.消耗水中的氧,使鱼类亡,生态系统恶化.由于工业上不妥善处理汞化合物和其它重金属,也造成严重的水污染.汞通过食物链的进程逐渐集中,最后对吃鱼的鸟或人类造成严重的神经损坏.
3、地下水污染
与地表水一样,地下水也受到了污染的威胁,主要来自于地表或土壤水的下渗,农用氮肥以及垃圾中的油、酚污染着地下水,氮肥中的硝酸盐一旦进入地下,便转变为亚硝酸盐,它在人体中能够转变成致癌物质.地面植被的破坏和湿地的排水减少了地表水的渗透,从而降低了潜水面.由于城市和工业的过度需要,淡水不断被抽出作为生活和工业用水,然后作为地表污水重新排放,因而还会导致潜水面的进一步下降.另一方面,大量频繁的灌溉可以增强渗透作用,使潜水面一直升到地表.而在干旱地区,被水渗透的土地由于异常的蒸发作用,引起地下水中盐类的沉淀,迟早会变成不能耕作的盐碱地.
水资源保护
地球上的水似乎取之不尽,其实就目前人类的使用情况来看,只有淡水才是主要的水资源,而且只有淡水中的一小部分能被人们使用.淡水是一种可以再生的资源,其再生性取决于地球的水循环.随着工业的发展,人口的增加,大量水体被污染;为抽取河水,许多国家在河流上游建造水坝,改变了水流情况,使水的循环、自净受到了严重的影响.
五、固体废物
凡人类一切活动过程产生的,且对所有者已不再具有使用价值而被废弃的固态或半固态物质,通称为固体废物.各类生产活动中产生的固体废物俗称废渣;生活活动中产生的固体废物则称为垃圾."固体废物"实际只是针对原所有者而言.在任何生产或生活过程中,所有者对原料、商品或消费品,往往仅利用了其中某些有效成分,而对于原所有者不再具有使用价值的大多数固体废物中仍含有其它生产行业中需要的成分,经过一定的技术环节,可以转变为有关部门行业中的生产原料,甚至可以直接使用.可见,固体废物的概念随时、空的变迁而具有相对性.
固体废物的产生途径
维持人类社会一切活动的物料,处于动态平衡过程,并遵循质量守恒规律,可用社会物料流程来描述这一规律.
1.人类的一切活动,相对于外界环境而言,只不过开发与利用了物料,而最终以废物的形式等量回归于环境.这种对物料的"利用与归还"经常处于交叉的状态.在生产与产品的消费过程中,均产生各种形态的废物,这些废物一部分在生产与消费中得到回收和再利用.而另一部分,恰好与在环境中开发的原料等量的部分,以废物形式返回与环境中,形成一个封闭循环系统.
2.在现代社会中,人类活动的每一环节均产生各种状态的废物,从环境中原料的开发乃至产品的利用,无一例外.因此寻求减少废物产量的唯一途径,是降低原料的开发量、减少产品原料消耗.
固体废物的分类
固体废物的分类是依据其产生的途径与性质而定.在经济发达国家将固体废物分为工业、矿业、农业固体废物与城市垃圾四大类.我国制定的《固体废物管理法》中,将固体废物分为工业固体废物(废渣)与城市垃圾两类.其中含有毒有害物的成分,单独分列出一个有毒有害固体废物小类.
固体废物的危害
垃圾正成为困扰人类社会的一大问题,全世界每年要产生超过计划10亿吨的垃圾,大量的生活和工业垃圾由于缺少处理系统而露天堆放,垃圾围城现象日益严重,成堆的垃圾臭气熏天,病菌滋生,有毒物质污染地表和地下水,严重危害人类的健康,这种现象若得不到遏制,人类将被自己生产的垃圾埋葬掉.
六、地面沉降
地面沉降是指在一定的地表面积内所发生的地面水平面降低的现象.地面沉降现象很早就为史书所记载.作为自然灾害,地面沉降的发生有着一定的地质原因.但是,随着人类社会经济的发展、人口的膨胀,地面沉降现象越来越频繁,沉降面积也越来越大.在人口密集的城市,地面沉降现象尤为严重.现在我们研究地面沉降的原因时,不难发现,人为因素已大大超过了自然因素.现在的地面沉降现象与其说是自然灾害,倒不如称之为人为祸患.
地面沉降的地质原因
从地质因素看,自然界发生的地面沉降大致有下列三种原因:
1、地表松散地层或半松散地层等在重力作用下,在松散层变成致密的、坚硬或半坚硬岩层时,地面会因地层厚度的变小而发生沉降.
2、因地质构造作用导致地面凹陷而发生沉降.
3、地震导致地面沉降.
地面沉降的人为原因
地面沉降现象与人类活动密切相关.尤其是近几十年来,人类过度开采石油、天然气、固体矿产、地下水等直接导致了今天全球范围内的地面沉降.由于各大中城市都处于巨大的人口压力之下,地下水的过度抽采更为严重,导致大部分城市出现地面沉降,在沿海地区还造成了海水入侵.
七、生物多样性变化
生物群落是多种多样的,人们可以从不同的角度将其划分为若干类型.生物多样性的涵义十分宽泛,即包括生物物种的多样性,还包括生态适应性、形态、生理生态多样性等广泛的内容.
不同地理、气候环境具有不同的生物群落.随着工业文明的发展,人类社会逐步扩张,改变了广大地区的生物环境,严重影响了生物多样性,物种正以前所未有的速度从地球上减少.
据估计,全世界每年有数千种动植物灭绝.
砍伐森林
对世界植物和动物的最大威胁是生态环境的破坏.大部分生物很难离开它已适应了的环境.世界上物种最丰富的地方之一是热带雨林区,但是现在它正在遭受到越来越快的破坏.实际上,世界上所有的天然森林都受到严重威胁.程度最轻的是雨林被单一的经济林所代替,情况最严重的地方已因侵蚀而被破坏成了贫瘠的灌丛地.
据世界自然保护基金会估计,全球的森林正以每年2%的速度消失,按照这个速度,50年后人们将看不到天然森林了.
开垦草原
北美的许多草原已经或多或少地消失了.在非洲,由于要解决日益增加的人口的粮食问题,人们正在大量焚毁有丰富动物资源的热带草原.在干旱地区采用传统农业方法既不可靠又危险.为开垦中亚内陆干草原所做的努力,已经遭到了许多不幸的挫折.
排干湿地
沼泽湿地不仅是生物的生活环境,而且在水文循环中起着重要的作用.它可调节河流的流速,改善地下水的补给.但是为了发展工业和建筑住房,许多湿地不是被排干就是蓄满了水.试图把湿地转变为耕地,结果常常是土贫产低.
城市化发展
城镇发展于良好的农业区,而都市化常常意味着为建设住宅、街道和停车场而牺牲耕地.这样耕地就变成了不能出产生物的废地.从自然或经济的角度来看,这样的土地很难再恢复成农田.
动物灭绝
许多动物种类已濒临灭绝,仅是面临危险的脊椎动物数量也是十分惊人的.威胁的性质是各种各样的:欧洲的猛禽正遭到采集鸟蛋者的威胁,而老虎则面临着其出没的密林被砍伐掉的危险.许多濒临动物已难以挽救了,而另外一些若能受到保护尚可幸存.
八、赤潮
赤潮是水体中某些微小的浮游植物、原生动物或细菌,在一定的环境条件下突发性地增殖和聚集,引起一定范围内一段时间中水体变色现象.通常水体颜色因赤潮生物的数量、种类而呈红、黄、绿和褐色等.
赤潮虽然自古就有,但随着工农业生产的迅速发展,水体污染日益加重,赤潮也日趋严重.
赤潮的成因
赤潮究竟是一种原本就存在的自然现象,还是人为污染造成的,至今尚无定论.但根据大量调查研究发现,赤潮发生必须具备以下条件:
①海域水体高营养化;
②某些特殊物质参与作为诱发因素,已知的有维生素B1、B12、铁、锰、脱氧核糖核酸;
③环境条件,如水温、盐度等也决定着发生赤潮的生物类型.发生赤潮的生物类型主要为藻类,目前已发现有63种浮游生物,硅藻有24种,甲藻32种、蓝藻3种、金藻1种、隐藻2种、原生动物1种.
赤潮的危害
赤潮不仅给海洋环境、海洋渔业和海水养殖业造成严重危害,而且对人类健康甚至生命都有影响.主要包括两个方面:
①引起海洋异变,局部中断海洋食物链,使海域一度成为海;
②有些赤潮生物分泌毒素,这些毒素被食物链中的某些生物摄入,如果人类再食用这些生物,则会导致中毒甚至亡.
九、水土流失
土地资源是三大地质资源(矿产资源、水资源、土地资源)之一,是人类生产活动最基本的资源和劳动对象.人类对土地的利用程度反映了人类文明的发展,但同时也造成对土地资源的直接破坏,这主要表现为不合理垦植引起的水土流失、土地沙漠化、土地次生盐碱化及土壤污染等,而其中水 土流失尤为严重,乃当今世界面临的又一个严重危机.
水土流失概述
水土流失是指在水流作用下,土壤被侵蚀、搬运和沉淀的整个过程.在自然状态下,纯粹由自然因素引起的地表侵蚀过程非常缓慢,常与土壤形成过程处于相对平衡状态.因此坡地还能保持完整.这种侵蚀称为自然侵蚀,也称为地质侵蚀.在人类活动影响下,特别是人类严重地破坏了坡地植被后,由自然因素引起的地表土壤破坏和土地物质的移动,流失过程加速,即发生水土流失.
水土流失是我国土地资源遭到破坏的最常见的地质灾害,其中以黄土高原地区最为严重.我国目前水土流失总的情况是:点上有治理,面上有扩大,治理赶不上破坏.全国水土流失面积解放初期为17.4亿亩,到1980年约治理6亿亩.由于治理赶不上破坏,水土流失面积却扩大到22.5亿亩,约占国土总面积的1/6,涉及近千个县.全国山地丘陵区有坡耕地约4亿亩,其中修梯田约1亿亩,而另外3亿亩坡地正遭受水土流失的危害.
水土流失危害
土壤肥力下降,水土流失可使大量肥沃的表层土壤丧失.
水库淤积,河床抬高,通航能力降低,洪水泛滥成灾.
威胁工矿交通设施安全.在高山深谷,水土流失常引起泥石流灾害,危及工矿交通设施安全.
恶化生态环境.20世纪30~60年代,人们对于水土流失灾害的认识还停留在对土地造成直接经济损失方面,但在60年代以后,开始联系到人类整个环境所受的影响,包括沉淀物的污染,生态环境的恶化等.
水土流失的原因
易于发生水土流失的地质地貌条件和气候条件是造成发生水土流失的主要原因.
人口多,粮食、民用燃料需求等压力大,在生产力水平不高的情况下,对土地实行掠夺性开垦,片面强调粮食产量,忽视因地制宜的农林牧综合发展,把只适合林,牧业利用的土地也辟为农田.大量开垦陡坡,以至陡坡越开越贫,越贫越垦,生态系统恶性循环;滥砍滥伐森林,甚至乱挖树根、草坪,树木锐减,使地表裸露,这些都加重了水土流失.另外,某些基本建设不符合水土保持要求,例如,不合理修筑公路、建厂、挖煤、采石等,破坏了植被,使边坡稳定性降低,引起滑坡、塌方、泥石流等更严重的地质灾害.
水土流失的防治
水土流失是地表径流在坡地上运动造成的.各项防治措施的基本原理是:减少坡面径流量,减缓径流速度,提高土壤吸水能力和坡面抗冲能力,并尽可能抬高侵蚀基准面.在采取防治措施时,应从地表径流形成地段开始,沿径流运动路线,因地制宜,步步设防治理,实行预防和治理相结合,以预防为主;治坡与治沟相结合,以治坡为主;工程措施与生物措施相结合,以生物措施为主.只有采取各种措施综合治理和集中治理, 持续治理,才能奏效.
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。