1.天然气开详细资料大全

2.矿产储量计算的计算方法

3.天然气水合物远景预测

4.石油技术可储量的计算

5.与矿产储量估算和报告编制有关的基本概念

6.天然气十二五规划(推动天然气产业健康发展)

天然气动态储量计算方法有哪些应用领域组成_天然气已探明储量

工业燃料

以天然气代替煤,用于工厂暖,生产用锅炉以及热电厂燃气轮机锅炉。天然气发电是缓解能源紧缺、降低燃煤发电比例,减少环境污染的有效途径,且从经济效益看,天然气发电的单位装机容量所需投资少,建设工期短,上网电价较低,具有较强的竞争力。

天然气发电,通过处理天然气以后,然后安装天然气发电机组来提供电能,

工艺生产

如烤漆生产线,烟叶烘干、沥青加热保温等

天然气化工工业

天然气是制造氮肥的最佳原料,具有投资少、成本低、污染少等特点。天然气占氮肥生产原料的比重,世界平均为80%左右。

城市燃气事业

特别是居民生活用燃料,包括常规天然气,以及煤层气和页岩气这两种非常规天然气。主要是生产以后并入管道,日常使用天然气。随着人民生活水平的提高及环保意识的增强,大部分城市对天然气的需求明显增加。天然气作为民用燃料的经济效益也大于工业燃料。

压缩天然气汽车

以天然气代替汽车用油,具有价格低、污染少、安全等优点。国际天然气汽车组织的统计显示,天然气汽车的年均增长速度为20.8%,全世界共有大约1270万辆使用天然气的车辆,2020年总量将达7000万辆,其中大部分是压缩天然气汽车。

天然气是优质高效的清洁能源,二氧化碳和氮氧化物的排放仅为煤炭的一半和五分之一左右,二氧化硫的排放几乎为零。天然气作为一种清洁、高效的化石能源,其开发利用越来越受到世界各国的重视。全球范围来看,天然气量要远大于石油,发展天然气具有足够的保障。

增效天然气

是以天然气为基础气源,经过气剂智能混合设备与天然气增效剂混合后形成的一种新型节能环保工业燃气,燃烧温度能提高至3300℃,可用于工业切割、焊接、打破口,可完全取代乙炔气、丙烷气,可广泛应用于钢厂、钢构、造船行业,可在船舱内安全使用,现市面上的产品有锐锋燃气,锐锋天然气增效剂。

人们的环保意识提高,世界需求干净能源的呼声高涨,各国也透过立法程序来传达这种趋势,天然气曾被视为最干净的能源之一,再加上1990年中东的波斯湾危机,加深美国及主要石油消耗国家研发替代能源的决心,因此,在还未发现真正的替代能源前,天然气需求量自然会增加。

天然气开详细资料大全

统计方法和标准不同、量和开技术不同等。

1、统计方法和标准不同:不同机构在统计天然气储量时,会用不同的统计方法和标准,例如不同的地质储量计算方法和标准、不同的评价方法和标准等,这会导致数据存在差异。

2、量和开技术不同:不同机构所掌握的天然气量和开技术不同,这会影响对储量的评估和预测。例如,一些机构更加注重开发利用现有,而另一些机构则更加注重探索新的。

矿产储量计算的计算方法

天然气也同原油一样埋藏在地下封闭的地质构造之中,有些和原油储藏在同一层位,有些单独存在。对于和原油储藏在同一层位的天然气,会伴随原油一起开出来。对于只有单相气存在的,我们称之为气藏,其开方法既与原油的开方法十分相似,又有其特殊的地方。

基本介绍 中文名 :天然气开 由于 :天然气密度小 密度 :为0.75~0.8千克/立方米 埋藏在 :地下封闭的地质构造之中 概要,中国发展,相关政策,勘测方法, 概要 由于天然气密度小,为0.75~0.8千克/立方米,井筒气柱对井底的压力小;天然气粘度小,在地层和管道中的流动阻力也小;又由于膨胀系数大,其弹性能量也大。因此天然气开时一般用自喷方式。这和自喷油方式基本一样。不过因为气井压力一般较高加上天然气属于易燃易爆气体,对气井口装置的承压能力和密封性能比对油井口装置的要求要高的多。 天然气开也有其自身特点。首先天然气和原油一样与底水或边水常常是一个储藏体系。伴随天然气的开进程,水体的弹性能量会驱使水沿高渗透带窜入气藏。在这种情况下,由于岩石本身的亲水性和毛细管压力的作用,水的侵入不是有效地驱替气体,而是封闭缝缝洞洞或空隙中未排出的气体,形成死气区。这部分被圈闭在水侵带的高压气,数量可以高达岩石孔隙体积的30%~50%,从而大大地降低了气藏的最终收率。其次气井产水后,气流入井底的渗流阻力会增加,气液两相沿油井向上的管流总能量消耗将显著增大。随着水侵影响的日益加剧,气藏的气速度下降,气井的自喷能力减弱,单井产量迅速递减,直至井底严重积水而停产。目前治理气藏水患主要从两方面入手,一是排水,一是堵水。堵水就是用机械卡堵、化学封堵等方法将产气层和产水层分隔开或是在油藏内建立阻水屏障。目前排水办法较多,主要原理是排除井筒积水,专业术语叫排水气法。 中国发展 自从1998年以来,在塔里木盆地、鄂尔多斯盆地、四川盆地相继发现的特大型气田非但出人意料地开启了中国全国性的天然气时代,亦戏剧性地增加了这个国家在国际天然气市场交易中的谈判筹码。中国陆上气田已探明地质储量超过陆海气田总储量的90%以上。对陆上气田产能的判断将使天然气业者对诸如进口天然气、境内市场的决策产生重要影响。在另一方面,近10年以来,针对中国海洋天然气产能前景的乐观情绪相当高涨。但如果摘下民族主义者的眼镜,中国天然气业者将发现期望和现实开发套用之间存在相当大的鸿沟:东海和南中国海的气田存在地区争议,以当前局势而言在十二五、十三五甚至十四五期间亦难有较大转圜;除了近期新开发的珠江口盆地荔湾3-1气田外,其他开利用中的海上气田都是中小型气田,全部产能累加仅接近于1.5个沿海接收站的最大供气能力。 塔里木盆地的天然气开和集输局部 近年来中国的石油和天然气开业发展迅速。2006年1-12月,中国石油天然气开行业累计实现工业总产值759,073,351千元,比2005年同期增长了24.74%;累计实现产品销售收入773,655,604千元,比2005年同期增长了27.24%;累计实现利润总额363,568,825千元,比2005年同期增长了24.22%。2007年1-11月,中国石油天然气开行业累计实现工业总产值726,174,178千元,比2006年同期增长了4.82%;累计实现产品销售收入767,905,515千元,比2006年同期增长了6.98%,累计实现利润总额334,817,296千元,比2006年同期下降了7.72%。2008年1-10月,中国石油和天然气开行业累计实现工业总产值155,299,892千元,比2007年同期增长了46.85%;累计实现产品销售收入154,189,131千元,比2007年同期增长了42.07%;累计实现利润总额78,834,704千元,比2007年同期增长了61.23%。 春晓和平湖油气田群的开和集输 中国近海海域发育了一系列沉积盆地,总面积达近百万平方公里,具有丰富的含油气远景。这些沉积盆地自北向南包括:渤海盆地、北黄海盆地、南黄海盆地、东海盆地、冲绳海槽盆地、台西盆地、台西南盆地、台东盆地、珠江口盆地、北部湾盆地、莺歌海-琼东南盆地、南海南部诸盆地等。中国海上油气勘探主要集中于渤海、黄海、东海及南海北部大陆架。 根据院2003年5月9日颁布的《全国海洋经济发展规划纲要》,中国近海石油量约240亿吨,海洋可再生能源理论蕴藏量6.3亿千瓦。到2010年海洋产业增加值将占GDP5%以上,海洋经济将成为国民经济新的增长点。 2005-2020年期间,中国石油天然气产量远远不能满足需求,且供需缺口将越来越大。中国对天然气的需求将以每年15%左右的速度增长,2010年将超过1,000亿立方米,2020年将达到2,000亿立方米,占整个能源构成的10%。 根据分析:预计到2020年,海洋石油占全球石油开量的35%。而我国目前海洋石油占石油开总量不足1/5,提升潜力巨大。 相关政策 第一章 总则 第一条 为了规范石油天然气(以下简称油气)开活动的会计处理和相关信息的披露,根据《企业会计准则--基本准则》,制定本准则. 第二条 油气开活动包括矿区权益的取得以及油气的勘探、开发和生产等阶段. 第三条 油气开活动以外的油气储存、集输、加工和销售等业务的会计处理,适用其他相关会计准则. 第二章 矿区权益的会计处理 第四条 矿区权益,是指企业取得的在矿区内勘探、开发和生产油气的权利. 矿区权益分为探明矿区权益和未探明矿区权益.探明矿区,是指已发现探明经济可储量的矿区;未探明矿区,是指未发现探明经济可储量的矿区. 探明经济可储量,是指在现有技术和经济条件下,根据地质和工程分析,可合理确定的能够从已知油气藏中开的油气数量. 第五条 为取得矿区权益而发生的成本应当在发生时予以资本化.企业取得的矿区权益,应当按照取得时的成本进行初始计量: (一)申请取得矿区权益的成本包括探矿权使用费、矿权使用费、土地或海域使用权支出、中介费以及可直接归属于矿区权益的其他申请取得支出. (二)购买取得矿区权益的成本包括购买价款、中介费以及可直接归属于矿区权益的其他购买取得支出. 矿区权益取得后发生的探矿权使用费、矿权使用费和租金等维持矿区权益的支出,应当计入当期损益. 第六条 企业应当用产量法或年限平均法对探明矿区权益计提折耗.用产量法计提折耗的,折耗额可按照单个矿区计算,也可按照若干具有相同或类似地质构造特征或储层条件的相邻矿区所组成的矿区组计算.计算公式如下: 探明矿区权益折耗额=探明矿区权益账面价值t探明矿区权益折耗率探明矿区权益折耗率=探明矿区当期产量/(探明矿区期末探明经济可储量+探明矿区当期产量) 第七条 企业对于矿区权益的减值,应当分别不同情况确认减值损失: (一)探明矿区权益的减值,按照《企业会计准则第8号--资产减值》处理. (二)对于未探明矿区权益,应当至少每年进行一次减值测试. 单个矿区取得成本较大的,应当以单个矿区为基础进行减值测试,并确定未探明矿区权益减值金额.单个矿区取得成本较小且与其他相邻矿区具有相同或类似地质构造特征或储层条件的,可按照若干具有相同或类似地质构造特征或储层条件的相邻矿区所组成的矿区组进行减值测试. 未探明矿区权益公允价值低于账面价值的差额,应当确认为减值损失,计入当期损益.未探明矿区权益减值损失一经确认,不得转回. 第八条 企业转让矿区权益的,应当按照下列规定进行处理: (一)转让全部探明矿区权益的,将转让所得与矿区权益账面价值的差额计入当期损益. 转让部分探明矿区权益的,按照转让权益和保留权益的公允价值比例,计算确定已转让部分矿区权益账面价值,转让所得与已转让矿区权益账面价值的差额计入当期损益. (二)转让单独计提减值准备的全部未探明矿区权益的,转让所得与未探明矿区权益账面价值的差额,计入当期损益. 转让单独计提减值准备的部分未探明矿区权益的,如果转让所得大于矿区权益账面价值,将其差额计入当期损益;如果转让所得小于矿区权益账面价值,以转让所得冲减矿区权益账面价值,不确认损益. (三)转让以矿区组为基础计提减值准备的未探明矿区权益的,如果转让所得大于矿区权益账面原值,将其差额计入当期损益;如果转让所得小于矿区权益账面原值,以转让所得冲减矿区权益账面原值,不确认损益. 转让该矿区组最后一个未探明矿区的剩余矿区权益时,转让所得与未探明矿区权益账面价值的差额,计入当期损益. 第九条 未探明矿区(组)内发现探明经济可储量而将未探明矿区(组)转为探明矿区(组)的,应当按照其账面价值转为探明矿区权益. 第十条 未探明矿区因最终未能发现探明经济可储量而放弃的,应当按照放弃时的账面价值转销未探明矿区权益并计入当期损益.因未完成义务工作量等因素导致发生的放弃成本,计入当期损益. 第三章油气勘探的会计处理 第十一条 油气勘探,是指为了识别勘探区域或探明油气储量而进行的地质调查、地球物理勘探、钻探活动以及其他相关活动. 第十二条 油气勘探支出包括钻井勘探支出和非钻井勘探支出. 钻井勘探支出主要包括钻探区域探井、勘探型详探井、评价井和资料井等活动发生的支出;非钻井勘探支出主要包括进行地质调查、地球物理勘探等活动发生的支出. 第十三条 钻井勘探支出在完井后,确定该井发现了探明经济可储量的,应当将钻探该井的支出结转为井及相关设施成本. 确定该井未发现探明经济可储量的,应当将钻探该井的支出扣除净残值后计入当期损益. 确定部分井段发现了探明经济可储量的,应当将发现探明经济可储量的有效井段的钻井勘探支出结转为井及相关设施成本,无效井段钻井勘探累计支出转入当期损益. 未能确定该探井是否发现探明经济可储量的,应当在完井后一年内将钻探该井的支出予以暂时资本化. 第十四条 在完井一年时仍未能确定该探井是否发现探明经济可储量,同时满足下列条件的,应当将钻探该井的资本化支出继续暂时资本化,否则应当计入当期损益: (一)该井已发现足够数量的储量,但要确定其是否属于探明经济可储量,还需要实施进一步的勘探活动; (二)进一步的勘探活动已在实施中或已有明确计画并即将实施. 钻井勘探支出已费用化的探井又发现了探明经济可储量的,已费用化的钻井勘探支出不作调整,重新钻探和完井发生的支出应当予以资本化. 第十五条 非钻井勘探支出于发生时计入当期损益. 第四章 油气开发的会计处理 第十六条油气开发,是指为了取得探明矿区中的油气而建造或更新井及相关设施的活动. 第十七条油气开发活动所发生的支出,应当根据其用途分别予以资本化,作为油气开发形成的井及相关设施的成本. 油气开发形成的井及相关设施的成本主要包括: (一)钻前准备支出,包括前期研究、工程地质调查、工程设计、确定井位、清理井场、修建道路等活动发生的支出; (二)井的设备购置和建造支出,井的设备包括套管、油管、抽油设备和井口装置等,井的建造包括钻井和完井; (三)购建提高收率系统发生的支出; (四)购建矿区内集输设施、分离处理设施、计量设备、储存设施、各种海上平台、海底及陆上电缆等发生的支出. 第十八条 在探明矿区内,钻井至现有已探明层位的支出,作为油气开发支出;为获取新增探明经济可储量而继续钻至未探明层位的支出,作为钻井勘探支出,按照本准则第十三条和第十四条处理. 第五章 油气生产的会计处理 第十九条 油气生产,是指将油气从油气藏提取到地表以及在矿区内收集、拉运、处理、现场储存和矿区管理等活动. 第二十条 油气的生产成本包括相关矿区权益折耗、井及相关设施折耗、设备及设施折旧以及操作费用等.操作费用包括油气生产和矿区管理过程中发生的直接和间接费用. 第二十一条 企业应当用产量法或年限平均法对井及相关设施计提折耗.井及相关设施包括确定发现了探明经济可储量的探井和开活动中形成的井,以及与开活动直接相关的各种设施.用产量法计提折耗的,折耗额可按照单个矿区计算,也可按照若干具有相同或类似地质构造特征或储层条件的相邻矿区所组成的矿区组计算.计算公式如下: 矿区井及相关设施折耗额=期末矿区井及相关设施账面价值t矿区井及相关设施折耗率矿区井及相关设施折耗率=矿区当期产量/(矿区期末探明已开发经济可储量+矿区当期产量) 探明已开发经济可储量,包括矿区的开发井网钻探和配套设施建设完成后已全面投入开的探明经济可储量,以及在提高收率技术所需的设施已建成并已投产后相应增加的可储量. 第二十二条 地震设备、建造设备、车辆、修理车间、仓库、供应站、通讯设备、办公设施等设备及设施,应当按照《企业会计准则第4号--固定资产》处理. 第二十三条 企业承担的矿区废弃处置义务,满足《企业会计准则第13号--或有事项》中预计负债确认条件的,应当将该义务确认为预计负债,并相应增加井及相关设施的账面价值. 不符合预计负债确认条件的,在废弃时发生的拆卸、搬移、场地清理等支出,应当计入当期损益. 矿区废弃,是指矿区内的最后一口井停产. 第二十四条 井及相关设施、设备及设施的减值,应当按照《企业会计准则第8号--资产减值》处理. 第六章 披露 第二十五条 企业应当在附注中披露与石油天然气开活动有关的下列信息: (一)拥有国内和国外的油气储量年初、年末数据. (二)当期在国内和国外发生的矿区权益的取得、油气勘探和油气开发各项支出的总额. (三)探明矿区权益、井及相关设施的账面原值,累计折耗和减值准备累计金额及其计提方法;与油气开活动相关的设备及设施的账面原价,累计折旧和减值准备累计金额及其计提方法. 勘测方法 1、地震仪的观测,测出由爆炸的电荷产生的震波,因而得知地表下岩石的结构。 2、地质勘探,找寻特别的岩层(含油或天然气)的位置。 3、地球重力的检查,以测量地心引力的改变,而测出石油或天然气的存在。

天然气水合物远景预测

按照矿块体积几何形状的不同,储量计算方法可分为:

①多角形法,又称最近地区法,以每一勘探工程见矿厚度为中心,推向各相邻工程距离的二分之一处,形成一多棱柱形体矿块;

②三角形法,以每3个相邻勘探工程见矿的平均厚度为三角棱柱体矿块的高;

③开块段法,以坑道工程为界,把矿体切割成若干板形矿块;

④地质块段法,按地质构造和开条件相同的原则划分矿块;

⑤断面法,又称剖面法,是将每两条相邻勘探线剖面间的矿体作为一个矿块;

⑥等高线法,对产状和厚度稳定的沉积矿床,以矿层顶板或底板等高线图为基础,将矿层倾角相近的地段划分为一个矿块;

⑦等值线法,利用矿体等厚线图或矿体厚度与品位乘积等值线图,将两等值线间的矿体划为一个矿块。矿块划分以后,视其几何形状选用公式计算体积和储量。

20世纪60年代以来,国际上用电了计算机计算矿产储量,使地质统计学等计算量大而结果较为精确的计算方法得以推广应用,它与传统储量计算方法的区别是:不单纯以矿块中的工程求得储量计算的参数(如品位)来计算该矿块的储量,而是考虑矿体中样品与周围样品分布的空间位置(包含方向和距离)的相关关系,来计算矿块的品位和储量。这些方法在中国正在用已知矿床作实例,研究它的适用条件和范围。

石油及天然气地质储量计算

主要用容积法。石油的计算公式为

式中N为石油地质储量(万吨);A为含油面积(平方千米);h为平均有效厚度(米);Φ为平均有效孔隙度;Swi为平均油层原始含水饱和度;ρ0为平均地面原油密度(吨每立方米);B0i为平均原始原油体积系数。

地层原油中的原始溶解气地质储量Gs(亿立方米)的计算公式为

Gs=10-4N·Rsi

式中Rsi为原始溶解气油比(立方米每吨)。

此外,物质平衡法是利用生产资料计算石油动态地质储量的方法。计算油田的探明储量,除应分别计算石油及溶解气的地质储量外,还要计算地质储量中能够出获得社会经济效益的可储量。可储量不仅与油藏类型、储层物性、流体性质、驱动类型等自然条件有关,而且与油时布井方式、注入方式、油工艺、油田管理水平以及经济条件等人为因素有关。随着油田勘探开发工作的进展,经济技术条件的改善,应合理选择有关资料、参数和经验公式,定期计算或复核可储量。

天然气的地质储量一般用容积法

其计算公式为

式中G为气田的原始地质储量(亿立方米);A为含气面积(平方千米);h为平均有效厚度(米);Φ为平均有效孔隙度;Swi为平均原始含水饱和度;T为气层温度(开尔文);Tsc为地面标准温度(开尔文);Psc为地面标准压力(兆帕);Pi为气田的原始地层压力(兆帕);Zi为原始气体偏差系数。

将容积法求得的天然气地质储量乘以天然气收率,求得可储量。

地下水水量计算

评价地下水水量是指人类可资利用的地下水水量。根据需要,结合地区的水文地质条件,分别计算地下水的补给量(单位时间内流入含水层的地下水总量)、储存量(储存于含水层内的重力水体积)、可开量。作为供水水源地,主要计算可开量。可开量是指在一定的技术经济条件下,用合理开方案和合理开动态,在整个开期间不明显袭夺已有水源地,不发生危害性的环境地质问题的前提下,允许开的水量,其中包括开时可夺取的天然补给量或排泄量、开条件下的激发补给量、可利用的储存量和人工补给量。地下水既不同于固体矿产,它具有流动性,也不同于石油天然气矿产,它还具有恢复性。因此评价时必须在查明地下水的补给、径流、排泄条件和预测它在开过程中可能发生水量水质变化的情况下,分别按水源地水文地质条件,含水介质类型(孔隙性介质、岩溶性介质、裂隙性介质),水力性质(潜水、承压水),边界条件,含水层的不均匀性,地下水动态观测时间系列的长短,开布井方式等,选择相应公式计算水文地质参数和地下水水量。

石油技术可储量的计算

一、天然气水合物量估算方法

为评估天然气水合物量,人们曾经做了大量努力,20世纪80年代至90年代初,许多学者在对控制水合物形成条件与分布规律进行分析、推测的基础上,利用体积法对全球天然气水合物所含甲烷量进行过估算(Dobrynin等,1981;Mclvei,1981;Kvenvolden,1988;Sloan,1990),但由于实际资料的缺乏,参数的选择主要依据各种各样的设,不同学者的估算结果差别很大,相差几个数量级。20世纪90年代中后期,随着地震反射、测井、钻井取样与测试技术在天然气水合物勘探中的广泛应用,一系列间接的地球物理方法被用来对天然气水合物与下伏游离气体的量进行了估计,参数的选择往往通过实测资料推算获得,其精度和可靠性大大提高。

目前国际上流行的天然气水合物评估方法可分为两类,一是基于天然气水合物地球物理-地球化学响应的已发现矿藏的常规体积法,该方法以日本地质调查所1992年进行的“容积法(体积法)”为代表;二是基于天然气水合物成因的未发现的概率统计法,该方法以美国地质调查局1995年的“未发现的概率统计法”为代表。

1.基于天然气水合物地球物理-地球化学响应的常规体积法

该类方法以地球物理、地球化学和钻井测试等勘查成果为基础,对已发现的天然气水合物的分布厚度、沉积物孔隙度和孔隙中水合物的含量直接演算,参数来自被评价区,因而结果较为可靠,目前仍然是以地球物理方法为主。与大陆边缘一般的沉积物相比,含天然气水合物的沉积层具有较高的纵波速度,因而可通过岩石物理模型的方法估算水合物的含量,识别BSR,确定其上覆水合物的含量及其下伏游离气体的分布。另外,精细速度分析及波阻抗反演、地震波形反演、叠前AVO技术在量评价方面也发挥了重要的作用,如20世纪90年代早期,School等(1993)、Max等(1996)运用多道地震剖面的VAMPS(Velocity and Amplitude Structures)分析天然气水合物及其下伏游离气体的存在以及水合物定量分析;Miller等(1991)通过对秘鲁滨外多道地震资料和合成地震记录来推断天然气水合物的含量及其下伏游离气层的厚度;Lee等(1993)利用多道地震反射的真振幅和层速度分析对沉积物中水合物的含量进行了定量分析。在有取样或者钻探的条件下,则利用沉积物中氯离子浓度变化、δ18O值的变化、取样器温度-压力变化和孔隙水成分测量等地球化学方法来评价甲烷水合物的含量多少。Dickens等(19)对美国东南部布莱克海台水合物样品的甲烷含量直接进行了测量,其测量结果显示,垂向沉积剖面上的甲烷含量变化趋势与间接法得出的结论一致,但下伏游离甲烷气含量比间接法的结果高出三分之一。

日本学者对Gornitz(1994)发表的计算思路进行了扩充,即天然气水合物气田的原始量(Q),理论上是天然气水合物分解生成的气体总量(QH)、游离气体总量(QG)以及层间水中所含溶解气体总量(QL)的总和,即

我国海域天然气水合物地质-地球物理特征及前景

(1)水合物分解气体的量(QH)

分解气体的量(QH)为天然气水合物中甲烷量(V)与集聚率(R)的乘积;终极可量(GH)又是分解气体的量(QH)与收率(B)的乘积。即

我国海域天然气水合物地质-地球物理特征及前景

式中:A为水合物的分布面积;R为集聚率;ΔZ为天然气水合物稳定带的平均厚度;Φ为沉积物的平均孔隙度;H为天然气水合物饱和度;E为产气因子。

(2)游离气的量(QG)

在天然气稳定带(HSZ)内,剩余的游离气由于被认为是与层间水反应形成的天然气水合物,可以定一般不存在具有量的游离气。因此,游离气的量(QG)最好用常规气田储藏量计算法计算HSZ下圈闭的游离气的量。水合物层下伏游离气量可用下式计算:

我国海域天然气水合物地质-地球物理特征及前景

式中:QG为游离气的原始量;GG为游离气的终极可量;为游离气的分布面积;ΔZG为游离气层的平均厚度;RG为游离气的集聚率;ΦG为沉积物的平均孔隙率;P为地层压力;P0为标准状态的压力;T为沉积物的绝对温度;T0为标准状态的绝对温度;W为沉积物的水饱和率;BG为来自游离气的天然气的回收率。式中(×ΔZG×RG)表示水合物层下含游离气沉积物的容积。

(3)溶解气量(QL)

层间水中所含溶解气的量(QL)随温度、压力及盐度的变化而变化。因其与水合物层中所含气体量相比少得多,在计算大区域量时可以忽略不计。

2.基于天然气水合物成因的概率统计法

该类方法以天然气水合物成因为基础,主要用于未发现天然气水合物的评价,参数选择上主要参考区内已发现矿藏的实际参数,或与具有相似成矿地质条件的其他区域进行类比而获得,带有很大程度的推断性,因而参数往往以概率分布的形式参与统计计算。通常需要分别对生物成因气和热成因气进行评估。在评价生物气时,不需要引用气捕及运移通道的形成和烃类热成熟时间等指标,而有效孔隙度和甲烷生成量则是最重要的两个指标。热成因天然气水合物往往与油气勘探中烃类的形成过程类似,所以甲烷水合物的评估方法可与传统油气成藏的评价方法相类同,定量参数中的储层厚度和气藏大小,基本上与天然气水合物稳定带的体积相同,因此可根据研究区水深、海底温度和地温梯度等参数进行计算。如果研究区上述参数分布很不均匀,可将上述参数划分成若干可信度区分别计算与评价。

美国地质调查局(Collect,19)考虑了生物气含量、生物气源层厚度、热成因气供给、时间、有效运移概率、储集岩相、圈闭机制、有效孔隙度、烃聚集指数、水合物稳定带范围、储层厚度、水合物饱和度和水合物含气率等指标,依据有限的实际参数对美国海洋和陆地上的天然气水合物分区带进行了初步评价,计算了各区带和整个美国天然气水合物中天然气量大致的概率分布,计算的天然气水合物量几乎就是天然气水合物中甲烷的总量。

评价含两个部分:①对区带属性进行风险评价,以判断区带中存在天然气水合物的概率;②对水合物含量的参数进行评价,以判断区带中可能的水合物量的概率分布。天然气水合物的量(Q)主要取决于以下5个条件(Gornitz,1994;Collet等,2000):①天然气水合物分布面积(A);②天然气水合物储层厚度(ΔZ);③沉积物孔隙度(Φ);④天然气水合物饱和度(H);⑤产气因子(E,即单位体积天然气水合物包含的标准温-压条件下的气体体积)。评价中没有考虑的可开率,其计算公式为:

我国海域天然气水合物地质-地球物理特征及前景

通常,依据区带上的地震、地质、地球化学信息(水深图、沉积厚度分布图、沉积物中总有机碳含量、海底温度、地温梯度以及水合物稳定温-压域分布图等)以及类似地区的资料来进行评价,从而确定各参数的概率值。计算分3个步骤:①确定区带是否含水合物;②区带中水合物的量;③把上述两个步骤算得的结果结合起来考虑统计意义上的潜力。

二、天然气水合物远景量评价

(一)南海陆坡

1.常规体积法评估

根据南海海域BSR分布情况,综合考虑水深、稳定带厚度、有利构造区带、有利沉积区带和有利地球化学异常区分布等因素,在南海陆坡区共推测5个天然气水合物远景区块,分别为南海北部陆坡东部远景区、南海北部陆坡西部远景区、南海南部陆坡西部远景区、南海南部陆坡东部远景区和南海南部陆坡南部远景区,在此基础上,对各个区块进行了天然气水合物常规体积法评估。

(1)参数选择

天然气水合物分布面积与厚度 依据BSR的分布情况,计算出南海各远景区块天然气水合物有效分布面积在南海北部陆坡东部远景区约36787km2,南海北部陆坡西部远景区约26988km2,南海南部陆坡西部远景区约201km2,南海南部陆坡南部远景区约26123km2,南海南部陆坡东部远景区约15737km2。整个南海海域BSR有效分布面积约125833km2。在已经开展天然气水合物调查的西沙海槽区,将BSR之上的弱振幅及空白带厚度作为含水合物层的厚度,其他区块用稳定带潜在厚度作为含水合物层的厚度,得出各有利区块的含水合物层平均厚度在南海北部陆坡东部远景区约232m,海北部陆坡西部远景区约175m,南海南部陆坡西部远景区约160m,南海南部陆坡南部远景区约194m,南海南部陆坡东部远景区约152m。

孔隙度 孔隙度用相似地区类比获得。大西洋边缘布莱克海台ODP164的994钻孔、995钻孔和9钻孔在含天然气水合物层位(190~450m)沉积物孔隙度分别为57.0%、58.0%和58.1%,而由南海ODP184的1143钻孔、1144钻孔、1145钻孔、1146钻孔、1147钻孔和1148钻孔的资料来看,在海底以下200~400m左右,沉积物孔隙度平均为55%左右,因此计算天然气水合物量时沉积物孔隙度取55%。

水合物饱和度 天然气水合物饱和度的准确计算较为困难,由于天然气水合物并不稳定,在样过程中容易分解,因而难以直接测定天然气水合物饱和度的大小。许多学者应用各种间接方法对水合物饱和度进行了估计。由于天然气水合物富集同位素重的18O而且不含Cl-,因此样过程中水合物的分解将造成沉积物孔隙水的δ18O同位素组成以及Cl-含量异常。因而根据沉积物孔隙水的氧同位素组成和Cl-含量就可以估计天然气水合物饱和度的大小,但这种方法存在一个缺陷,沉积物原地孔隙水δ18O同位素组成和Cl-含量并不知道,计算时通常用海水的Cl-含量来代替原地孔隙水的Cl-含量并通过曲线拟合来确定原地孔隙水δ18O同位素组成,但这实际上并不十分准确,Egeberg等(1999)根据对流-扩散模型计算了原地孔隙水的化学组成,对天然气水合物的饱和度进行了更准确的估计;保压取心样器可取原地压力下1320cm3的样品,如果定其中过饱和的甲烷均以天然气水合物的形式存在,则可以计算出水合物的饱和度;由于水合物和沉积物的物理性质存在诸多差异,因而可以根据地震剖面或测井数据的差异来估计水合物的饱和度,如垂直地震剖面上的速度数据和测井电阻率等。表7-5为一些学者对天然气水合物饱和度的估计。Kaster等(1995)根据卡斯卡迪大陆边缘889钻孔的声速测井以及垂直地震剖面速度数据计算得出水合物饱和度至少为15%;Spence等(1995)利用889钻孔地震速度资料估算水合物饱和度为11%~20%;Paull等(1995)根据孔隙水C1-含量异常计算出布莱克海台天然气水合物饱和度最高为14%,994钻孔、995钻孔和9钻孔平均饱和度分别为1.3%、1.8%和2.4%;Matsumoto等(2000)利用孔隙水氧同位素组成异常以及最新测定的氧同位素分馏系数计算出994钻孔水合物饱和度为6%,9钻孔水合物饱和度为12%;Holbrook等(1996)根据地震速度数据计算994钻孔水合物饱和度为2%,995钻孔和9钻孔为5%~7%;Dickens等(19)利用保压取心样器所获样品的甲烷含量估计布莱克海台水合物饱和度约为0~9%;Collet等(2000)依据电阻率测井数据估算994钻孔、995钻孔和9钻孔水合物饱和度分别为3.3%、5.2%和5.8%;Lee(2000)利用声速测井资料计算出994钻孔、995钻孔和9钻孔水合物饱和度分别为3.9%、5.7%和3.8%。根据ODP164的钻井结果,水合物不可能在整个稳定带中均匀分布,在特定含有较多水合物的层位其饱和度较高(14%),但其平均饱和度不太可能很高。据以上分析,体积法计算天然气水合物量时,水合物饱和度取3.5%。

表7-5 天然气水合物饱和度估计

表7-6 天然气水合物的部分参数特征

产气因子 天然气水合物有3种结构(Kvenvolden,1995):Ⅰ型、Ⅱ型(菱形晶体结构)和H型(六方晶体结构)。自然界中天然气水合物以Ⅰ型结构为主,Ⅰ型结构水合物仅能容纳甲烷(C1)和乙烷(C2)这两种小分子的烃类气体以及N2、CO2及H2S等非烃分子,其分子直径不能超过5.2×10-10m。每个单元的Ⅰ型结构天然气水合物由46个水分子构成2个小的十二面体“笼子”以及6个大的四面体“笼子”以容纳气体分子(Lorenson等,2000),因此,在理想状态下,每个Ⅰ型结构天然气水合物单元包含46个水分子以及8个气体分子,水/气分子比值(n,水合物指数)为46/8,即n=5.75。依此推算,在压力条件为28MPa的情况下,单位体积的水合物可以包含173体积的气体,即产气因子为173。实际上,在自然界的天然气水合物中不可能所有“笼子”均充填有气体,因此,水合物指数通常要大于5.75。许多学者对水合物指数进行了测定(Matsumoto等,2000),但结果却相差甚大,有些结果与水合物的晶体结构明显不符。Handa(1988)对中美洲海槽天然气水合物样品的分析结果表明,其水合物指数为5.91,墨西哥湾北部的格林大峡谷水合物指数为8.2。Ripmeester等(1988)测定了人工合成水合物样品的水合物指数,其范围为5.8~6.3。Matsumoto等(2000)测定的布莱克海台天然气水合物的水合物指数为6.2,从水合物指数与产气因子的对应关系(表7-6)可以看出,其产气因子为160.5。从实际测定的布莱克海台的天然气水合物样品所产生的气体与水的体积比(表7-7)来看,其变化范围为18~154,平均为76。由于在测定天然气水合物气体/水比值过程中存在孔隙水的混染,会造成计算结果偏低,Lorenson等(2000)用水中的Cl-含量对气体/水比值进行了校正,因为天然气水合物中应该不会存在Cl-离子,其分解后的水中的Cl-含量应该是孔隙水混染所致,对比天然气水合物分解后的水与孔隙水中Cl-的含量就可以进行校正,计算结果表明,孔隙水的混染程度为2%~50%,布莱克海台校正后的天然气水合物气/水体积比为29~204,平均为104。从表7-7可以看出,水合物的气体/水体积比值并没有明显的地质模式。而沉积物较浅部位的天然气水合物气体/水体积比值相对较低,大多小于100,对应的产气因子相当低,是由于取样以及分析时的人为偏差抑或反映了地质过程的影响目前尚不太清楚。但据Holder等(1982)的研究,如果水合物“笼子”中气体的填充率小于70%(对应气体/水体积比值为151.8),将导致水合物的不稳定,因而水合物那些很低的气体/水比值可能更多的是由于取样以及分析时的人为因素造成的,其代表的只是水合物最低的气体/水体积比值。布莱克海台996钻孔与盐底辟有关的水合物出露较浅,其气/水体积比值相对较小,如果只考虑994钻孔以及9钻孔的天然气水合物样品,其平均气/水体积比为188.5,对应的水合物指数为6.6,与Matsumoto等(2000)测定的水合物指数较为接近,相应的产气因子为150.8。南海水合物成矿条件与布莱克海台相差不大,水合物最可能的产气因子范围在121.5(满足70%气体填充率)至160.5(水合物指数6.2)之间,计算量时产气因子取150。

表7-7 世界各地天然气水合物气体与水体积的比值

(2)体积法量计算结果

根据以上所选择的参数,不考虑集聚率(R),用常规体积法(式5)计算得到南海5个远景区的远景量如表7-8所示。

应该说明的是,据国外钻探证实,在水合物层之下,还经常存在BSR之下储量相当可观的游离气(Dickens等,19)。由于资料所限,难以解释游离气的分布,也难以选择合理的参数来评估游离气的量,因此,本次计算仅限于包含在水合物中的甲烷气量,没有考虑游离气的量。同时,由于目前识别BSR及含水合物层主要靠地球物理勘探,地球化学探测难以触及含水合物层,现场测试及室内分析得到的地球化学异常很少,不能说明问题,也难以确定水合物成矿气体的成因类型。因此,在上述量估算中,设成矿气体为生物成因气,水合物中的烃类为甲烷。

表7-8 南海海域天然气水合物远景量估算结果

(3)法量计算结果

用数学统计方法,根据前述分析结果,选取如下参数:A为取区块中BSR分布的有效面积(表7-9);ΔZ为区块中含水合物层平均厚度(表7-8);Φ为沉积物平均孔隙度,取55%;H为水合物饱和度,范围为2.0%~5.0%,平均取3.5%;E为产气因子,范围为121.5~160.5,平均取150。

利用(式10)进行法计算,得到南海各天然气水合物远景区块的量如表7-9所示。总计最小值为394×1011m3(394×108t油当量),中间值为667×1011m3(667×108t油当量),最大值为898×1011m3(898×108t油当量)。其中间值与上述体积法计算得到的量(表7-8)基本一致。

2.南海天然气水合物潜在的概率统计法评估

由于南海深水区域勘查程度很低,对潜在的评估中没有对区带属性进行风险评价,仅依据相似性原理,参照国外勘探程度较高的海域天然气水合物分布的统计规律对水合物含量的参数进行评价,计算了南海海域潜在的天然气水合物量的概率分布。

表7-9 南海各天然气水合物远景量计算结果(法)

(1)参数选择

水合物分布面积 海底天然气水合物分布面积具有一定的统计规律,据佐藤干夫统计,1992年以前公开发表的具有良好BSR分布图的海域,中美洲海沟区的墨西哥海区,面积为1.0×105km2,BSR的分布面积为1.9×104km2;危地马拉海区,面积为1.0×105km2,BSR的分布面积为2.0×104km2;日本四国海南海海槽面积为1.2×105km2,BSR的分布面积为3.5×104km2,BSR分布的区块面积达海域的20%~25%(佐藤干夫,1996)。因而,以南海稳定带潜在厚度大于50m、水深3000m以浅的陆坡区为天然气水合物潜在分布区,其面积为81745335km2,推测南海海域水合物潜在分布面积是该值的25%,即204363.3km2。

水合物实际产出厚度概率分布 我国南海地质特征与大西洋被动大陆边缘盆地类似,因而水合物分布规律也与其相近。Majorowicz等(2001)对加拿大大西洋边缘天然气水合物的厚度等参数进行了统计,编绘了该海域天然气水合物厚度分布的直方图(图7-19),由此可以计算出厚度的累积概率分布(图7-20),计算时定南海天然气水合物厚度分布概率与之相同。

孔隙度概率、水合物饱和度概率和产气因子概率分布 Majorowicz等(2001)基于大量的钻井分析,得出了加拿大4个水合物成矿省的水合物分布面积、平均厚度、孔隙度及饱和度等参数的统计结果(表7-10)。孔隙度变化范围为22%~50%,而水合物饱和度的分布范围为2%~30%。美国地质调查局1995年在对海域天然气水合物进行评价时,孔隙度概率、水合物饱和度概率和产气因子概率分布全部用表7-11中的值。计算中定南海各参数与美国大西洋边缘海域的概率分布相同。

(2)量计算结果

选取上述参数,利用统计模拟法计算(式10)获得南海陆坡区的天然气水合物潜在量分布见图7-21。天然气水合物量最小值为91.66×1011m3(大于这一数值的累计概率为0.95),相当于91.66×108t油当量;最大值为6830.48×1011m3(大于这一数值的累计概率为0.05),相当于6830.48×108t油当量。概率期望值为1659.74×1011m3,相当于1659.74×108t油当量;潜在总量约为已推测量(体积法)的2倍。

表7-10 加拿大天然气水合物量分布

表7-11 孔隙度、饱和度和产气因子取值表

图7-19 大西洋边缘海域天然气水合物厚度分布频率直方图

图7-20 大西洋边缘海域天然气水合物厚度分布累计频率直方图

(二)东海冲绳海槽

用产烃率法和残余有机碳法,分别针对冲绳海槽盆地各个坳陷生物气量和热成烃量进行了估算:其中生物气量为43.0×108t,热成烃量为30.0×108t。总量为73.0×108t(表7-12)。

用容积法,当天然气水合物矿层充填率(H)为50%,聚集率(R)为0.01时,计算得到冲绳海槽天然气水合物总量为6.5×1012m3,即65.1×108t油当量。

图7-21 我国南海海域天然气水合物量分布累计频率曲线图

表7-12 冲绳海槽生物气量计算结果表

小结

1.南海部分

1)通过对陆坡区多道地震资料的再解释,识别并总结了BSR的区域分布规律和层位分布特征,探讨了部分海域BSR界面附近层速度及波形变化,分析了AVO属性等地球物理特征。初步研究表明,天然气水合物稳定带一般出现在中中新统之上,BSR埋深在海底以下约100~700ms(双程走时)。

2)依据多道地震资料识别的BSR及上部振幅空白带的发育情况,推算了研究区天然气水合物稳定带的分布与厚度。

3)根据实际温度、压力和盐及气体组分,开展天然气水合物形成的热动力学条件研究,建立相平衡模型及计算方法,以此推测天然气水合物稳定带的潜在厚度。模拟计算结果初步表明,南海海域天然气水合物形成所需要的水深一般大于500m,天然气水合物稳定带厚度一般在50~200m之间。

4)用基于天然气水合物地球物理-地球化学响应的常规体积法和成因概率统计法,对南海天然气水合物量进行了初步测算。

2.东海部分

1)根据约3000km多道地震资料的解释,识别并总结了BSR区域分布规律和层位分布特征,初步圈定综合异常分布区,提出了3类BSR成因演化的地质-地球物理模式。

2)开展天然气水合物成矿的物理化学状态平衡数值模拟,建立了天然气-天然气水合物-盐-水体系中主要组分在气、液、固三相中的活度模型和化学势函数模型。

3)利用容积法、产烃率法和残余有机碳法等方法,对冲绳海槽的天然气水合物远景进行了评估。

与矿产储量估算和报告编制有关的基本概念

根据中华人民共和国石油天然气行业标准 《石油可储量计算方法》 (SY/T5367-1998),可储量的计算方法共10类18种方法,每种方法都有各自的适用范围和局限性。应根据油藏开发阶段和开发方式等具体条件选取适用的方法。本部分对砂岩油藏可储量的常用计算方法进行详细阐述。其他类型油藏可储量的计算方法可参阅中华人民共和国石油天然气行业标准 《石油可储量计算方法》及有关书籍。

1. 开发初期油田可储量的计算方法

开发初期是指油田的建设期或注水开发油田中低含水期。此阶段,油田动态资料少,油藏开规律不明显。计算可储量的方法有经验公式法、类比法、流管法、驱油效率-波及系数法、数值模拟法及表格法。矿场上经常用的计算方法是经验公式法、类比法及表格法。

(1) 经验公式法

经验公式法是利用油藏地质参数和开发参数评价油藏收率,然后计算可储量的简易方法。应用该法时,重要的是了解经验公式所依据的油田地质和开发特征以及参数确定方法和适用范围。

美国石油学会收率委员会阿普斯 (J. J. Arps) 等人,从1956年开始到1967年,综合分析和统计了美国、加拿大、中东等产油国的312个油藏的资料。根据72个水驱砂岩油田的实际开发资料,确定的水驱砂岩油藏收率的相关经验公式为:

油气田开发地质学

式中:ER——收率,小数;φ——油层平均有效孔隙度,小数;Swi——油层束缚水饱和度,小数;Boi——原始地层压力下的原油体积系数,小数; ——油层平均绝对渗透率,10-3μm2;μwi——原始条件下地层水粘度,mPa·s;μoi——原始条件下原油地下粘度,mPa·s;pi——原始油层压力,MPa;pa——油藏废弃时压力,MPa。

上式适用于油层物性好、原油性质好的油藏。

17~18年B·C·科扎肯根据伏尔加-乌拉尔地区泥盆系和石炭系沉积地台型42个水驱砂岩油藏资料,获得以下经验公式:

油气田开发地质学

式中:μR——油水粘度比;Cs——砂岩系数;Vk——渗透率变异系数;h——油层平均有效厚度,m;f——井网密度,ha/口;其余符号同前。

该经验公式复相关系数R=0.85,适用于下列参数变化范围:μR=0.5~34.3;

油气田开发地质学

(109~3200) ×10-3μm2;Vk=0.33~2.24;h=2.6~26.9m;Cs=0.51~0.94;f=7.1~74ha/口。

18年,我国学者童宪章根据实践经验和统计理论,推导出有关水驱曲线的关系式,并将关系式和油藏流体性质、油层物性联系起来,推导出确定水驱油藏原油收率的经验公式:

油气田开发地质学

式中: —束缚水条件,油的相对渗透率与水的相对渗透率比值;μo——地层原油粘度,mPa·s;μw——地层水粘度,mPa·s。

上式的优点是简单,式中两个主要因素:一是油水粘度比,很易测定;另一个因素油、水相对渗透率比值,可以根据相对渗透率曲线间接求得。

1985年我国石油专业储量委员会办公室利用美国和前苏联公布的109个和我国114个水驱砂岩油藏资料进行了统计研究。利用多元回归分析,得到了油层渗透率和原油地下粘度两者比值 (影响收率的主要因素),与收率的相关经验公式:

ER=21.4289(K/μo)0.1316

上式适合我国陆相储层岩性和物性变化大、储层连续性差及多断层的特点,计算精度较高。

(2) 驱油效率-波及系数法

驱油效率可以用岩驱油实验法和分析常规岩心残余油含量法。

1) 岩驱油实验法:用岩心进行水驱油的实验,是测定油藏水驱油效率的基本方法之一,可直接应用从油层中取出的岩心做实验,也可以用人造岩心做实验。具体方法是将岩心洗净烘干后,用地层水饱和,然后用模拟油驱水,直到岩心中仅有束缚水为止。最后用注入水进行水驱油实验,模拟注水开发油藏的过程,直到岩心中仅有残余油为止。水驱油效率为:

油气田开发地质学

式中:ED——水驱油效率,小数;Sor——残余油饱和度,小数;Soi——原始含油饱和度,小数。

2) 分析常规岩心残余油含量法:取心过程中,钻井液对岩心的冲洗作用,与注水开发油田时注入水的驱油过程相似。可以认为钻井液冲洗后的岩心残余油饱和度,与水驱后油藏的残余油饱和度相当。因此,只需要分析常规取心的残余油饱和度就能求出油藏注水开发时的驱油效率。即:

油气田开发地质学

式中:β——校正系数,其余符号同前。

原始含油饱和度的求取本章已有叙述。残余油饱和度的测定方法通常有蒸馏法、色谱法及干馏法。由于岩心从井底取到地面时,压力降低,残余油中的气体分离出来,相当于溶解气驱油,使地面岩心分析的残余油饱和度减小,所以应进行校正,β一般为0.02~0.03。

用分析常规岩心的残余油含量来确定水驱油效率,简便易行。但是实际上,取心过程与水驱油过程有差别,用残余油饱和度法求得的水驱油效率往往较油田实际值低。

上述两种方法求得的驱油效率乘以注水波及系数,即为水驱收率。

波及系数是水驱油的波及体积与油层总体积之比。水驱波及系数与油层连通性、非均质性、分层性、流体性质、注井网的部署等都有密切的关系。连通好的油层,水驱波及系数可以达到80%以上;连通差的油层和复杂断块油藏,往往只有60%~70%。

(3) 类比法

类比法是将要计算可储量的油藏同有较长开发历史或已开发结束的油藏进行对比,并借用其收率,进行可储量计算。油藏对比要同时比较地质条件和开发条件,才能使对比结果接近实际。地质条件包括油藏的驱动类型、储层物性、流体性质及非均质性。开发条件包括井网密度、驱替方式及所用的工艺技术等。

(4) 表格计算法

表格计算法是根据油气藏的驱动类型,参照同类驱动油藏的收率,根据收率估算的经验,给定某油藏的收率值,估算其可储量。

油气藏的驱动类型是地层中驱动油、气流向井底以至出地面的能量类型。油气藏的驱动类型可分为弹性驱动、溶解气驱、水压驱动、气压驱动、重力驱动。油气藏的驱动类型决定着油气藏的开发方式和油气井的开方式,并且直接影响着油气开的成本和油气的最终收率。所以一个油气田在其投入开发之前,必须尽量把油气藏的驱动类型研究清楚。

油气藏驱动类型对收率的影响是很大的,但是同属一个驱动类型的油气藏,由于各种情况的千差万别,其收率不是固定的,而是存在着一个较大的变化范围。表7-3给出油藏在一次油和二次油时,不同驱动类型收率的变化范围。

表7-3 油藏收率范围表

表7-3所列出油气藏不同驱动类型时收率值的范围,是由大量已开发油气田所达到最终收率的实际统计结果而得出的。油藏三次油注聚合物等各种驱油剂的最终收率范围,则是依据实验室大量驱替试验结果得出的。不论是实际油气田的统计值还是驱替试验结果,均未包括那些特低或特高值的情况。仅由表中所列的数值范围就可看出,油气藏不同驱动类型之间最终收率相差很大,就是同一驱动类型的油气藏相差也悬殊。

(5) 流管法

流管法由于计算过程烦琐,矿场上不常用,因篇幅所限,此处不作介绍。

(6) 数值模拟法

数值模拟法适用于任何类型、任何开发阶段及任何驱替方式的油藏。开发初期,油藏动态数据少,难以校正地质模型,用数值模拟方法只能粗略计算油藏的可储量。

2. 开发中后期可储量的计算方法

开发中后期是指油田含水率大于40%以后,或年产油量递减期。开发中后期可储量的计算方法主要有水驱特征曲线法、产量递减曲线法、童氏图版法。

(1) 水驱特征曲线法

所谓水驱特征曲线,是指用水驱油藏的累积产水量和累积产油等生产数据所绘制的曲线。最典型的是以累积产水量为纵坐标,以累积产油量为横坐标所绘制的单对数曲线。

根据行业标准SY/T5367-1998,水驱特征曲线积算可储量共分为6种基本方法,加上童氏图版法,共7种方法。

1) 马克西莫夫-童宪章水驱曲线:此曲线常称作甲型水驱曲线,一般适用中等粘度(3~30mPa·s) 的油藏。其表达式为:

lgWp=a+bNp

可储量计算中,以实际的累积产水量为纵坐标,以累积产油量为横坐标,将数据组点在半对数坐标纸上。利用上式进行线性回归,得到系数a和b。然后利用下式计算可储量:

油气田开发地质学

计算技术可储量时,一般给定含水率fw=98%,计算对应于含水率98%时的累积产油量即为油藏的技术可储量。

2) 沙卓诺夫水驱曲线:沙卓诺夫水驱曲线适用于高粘度 (大于30mPa·s) 的油藏。表达式为:

lgLp=a+bNp

以油藏实际的累积产液量为纵坐标,以累积产油量为横坐标,数据组点在半对数坐标纸上,进行线性回归,得到上式中的系数a和b。同理给定含水率98%,计算油藏的可储量,计算公式如下:

油气田开发地质学

3) 西帕切夫水驱曲线:此种曲线适用于中等粘度 (3~30mPa·s) 油藏。表达式为:

油气田开发地质学

对应的累积产油量与含水率的关系式为:

油气田开发地质学

4) 纳扎洛夫水驱曲线:此种水驱曲线适用于低粘度 (小于3mPa·s) 的油藏。其表达式为:

油气田开发地质学

对应的累积产油量与含水率的关系式为:

油气田开发地质学

5) 张金水水驱曲线:此种水驱曲线适用于任何粘度、任何类型的油藏。其表达式为:

油气田开发地质学

对应的累积产油量与含水率的关系式为:

油气田开发地质学

6) 俞启泰水驱曲线:俞启泰水驱曲线适用于任何粘度、任何类型的油藏。其表达式为:

油气田开发地质学

对应的累积产油量与含水率的关系式为:

油气田开发地质学

7) 童氏图版法:童氏图版法也是基于二相渗流理论推导出的经验公式,其含水率与出程度的关系表达式为:

油气田开发地质学

以上七个公式中:Wp——累积产水量,104t;Np——累积产油量,104t;Lp——累积产液量,104t;fw——综合含水率,小数;R——地质储量出程度,小数;ER——收率,小数。

利用童氏图版法计算可储量,首先是依据如下图版 (图7-14),将油藏实际的含水率及其对应的出程度绘制在图版上,然后估计一个收率值。最后由估计的收率和已知的地质储量,计算油藏的可储量。一般童氏图版法不单独使用,而是作为一种参考方法。

图7-14 水驱油田收率计算童氏图版

前述1~6种方法均是计算可储量常用的方法。但对某个油藏,究竟选取哪种方法合理,不能单纯凭油藏的原油粘度来选择方法。要根据油田开发状况综合考虑,避免用单一因素选择的局限性。一般的做法是:首先,根据原油粘度选择一种或几种计算方法,计算出油藏的可储量和收率。然后,参考童氏图版法,看二者的收率值是否接近。若二者取值接近,说明生产数据的相关性好。但所计算的可储量是否符合油田实际,还要根据油藏类型及开发状况进行综合分析。若经过分析认为所计算的可储量不合理,则还要用其他方法进行计算。

(2) 产油量递减曲线法

任何一个规模较大的油田,按照产油量的变化,大体上可以将其开发全过程划分为3个阶段,即上产阶段、稳产阶段及递减阶段。但有些小型油田,因其建设周期很短,可能没有第一阶段。所述的3个开发阶段的变化特点和时间的长短,主要取决于油田的大小、埋藏深度、储层类型、地层流体性质、开发方式、驱动类型、开工艺技术水平及开发调整的效果。一个油藏的产油量服从何种递减规律,主要是由油藏的地质条件和流体性质所决定的,开发过程中的调整一般不会改变油藏的递减规律。

递减阶段产油量随时间的变化,服从一定的规律。Arps产油量递减规律有指数递减、双曲递减及调和递减三大类。后人在Arps递减规律的基础上,对Arps递减规律进行了补充完善。中华人民共和国行业标准 《石油可储量计算方法》 综合了所有递减规律研究成果,列出了用产油量递减曲线法计算油藏原油可储量的4种计算方法。

1) Arps指数递减曲线公式

递减期年产油量变化公式:

Qt=Qie-D

递减期累积产油量计算公式:

油气田开发地质学

递减期可储量计算公式:

油气田开发地质学

式中:Di——开始递减时的瞬时递减率,1/a;Qi——递减初期年产油量,104t/a;Qt——递减期某年份的产油量,104t/a;Qa——油藏的废弃产油量,104t/a。

递减期可储量计算的步骤是:

第一步,以年产油量为纵坐标,以时间为横坐标,在半对数坐标纸上,绘制递减期的年产油量与对应的年份数据组,并进行线性回归,得到一条直线,直线方程式为:lgQt=lgQi-Dit。则直线截距为lgQi,直线斜率为-Di,从而求得初始产量Qi,递减率Di。

第二步,确定油藏的废弃产量Qa。计算技术可储量时,一般以油藏稳产期的年产液量对应含水率98%时的年产油量为废弃产量。也可以根据开发的具体情况,根据经验,给定一个废弃产量。

第三步,由第一步所求的Qi,Di和第二步所求的Qa,代入递减期可储量计算公式,即可求得油藏的递减期可储量。递减期可储量加上递减前的累积产油量就是油藏的可储量。

2) Arps双曲递减曲线公式

递减期产油量变化公式:

油气田开发地质学

递减期累积产油量计算公式

油气田开发地质学

递减期可储量计算公式:

油气田开发地质学

递减期可储量计算的步骤如下:

第一步,求递减初始产油量Qi,初始递减率Di和递减指数n。产油量变化公式两边取对数得:

油气田开发地质学

给定一个,nDi值,依据上式,用油藏实际的产油量和对应年限数据组,进行线性回归。反复给定nDi值,并进行回归,直到相关性最好。此时,直线的截距为lgQi,直线斜率为-1/n。从而可求得Qi,n及Di值。

第二步,确定废弃产油量。

第三步,计算递减期可储量。将第一步所求得的3个参数和废弃产油量代入递减期可储量计算公式,便可求得递减期可储量值。递减期可储量加上递减前的累积产油量就是油藏的可储量。

3) Arps调和递减曲线公式

Arps双曲递减指数n=1,就变成了调和递减曲线。

递减期产油量变化公式:

油气田开发地质学

递减期累积产油量计算公式:

油气田开发地质学

递减期可储量计算公式:

油气田开发地质学

递减期可储量计算的步骤如下:

第一步,求递减初始产油量Qi,初始递减率Di。把产油量变化公式与累积产油量计算公式组合成:

油气田开发地质学

累积产量与产量呈半对数线性关系。根据直线的截距和斜率,可求得Di,Qi值。

第二步,确定废弃产油量。

第三步,计算递减期可储量。将第一步所求得的3个参数和废弃产油量代入递减期可储量计算公式,便可求得递减期可储量值。递减期可储量加上递减前的累积产油量就是油藏的可储量。

4) 变形的柯佩托夫衰减曲线Ⅱ

递减期产油量变化公式:

油气田开发地质学

递减期累积产油量计算公式:

油气田开发地质学

递减期可储量计算公式:

油气田开发地质学

计算可储量之前,首先要求得参数a,b,c。求参数常用且简便的方法如下:

首先,求得参数a和c。由递减期产油量变化公式和递减期累积产油量计算公式可得:

tQt+Np=a-cQt

根据上式,以tQt+Np为纵坐标,Qt为横坐标,进行线性回归,直线截距为a,斜率为-c。从而求得参数a和c。

然后,求参数b。将所求参数a和c代入累积产油量计算公式,以累积产油量Np为纵坐标,以1/(c+t)为横坐标,进行线性回归,则直线截距即为a,直线斜率即为要求的参数b。

天然气十二五规划(推动天然气产业健康发展)

周圣华

作者简介:周圣华,中国有色金属矿产地质调查中心,地质处处长,高级工程师,矿产储量评估师。

1 矿产储量估算方法

1.1 基本概念

矿产储量估算方法,是指矿产埋藏量估算过程中,各种参数及其储量的计算方法和相应软件的统称。由于矿产赋存方式千差万别,开发利用方式也不尽相同,因此,必须要研究适合不同矿种的矿产储量估算方法。根据我国矿产勘查开发过程中的应用实践,就矿产储量估算方法选择的角度,可以将矿产划分为三大类:第一类是固体矿产,包括金属矿产、非金属矿产和煤;第二类是石油、天然气、煤层气;第三类是地下水。

1.2 矿产储量估算方法的主要种类

关于矿产储量估算方法,可以参照由国土部储量司组织编著,2000年4月由地质出版社发行的《矿产储量计算方法汇编》。

油气方面,用于储量估算的方法主要有容积法、物质平衡法、弹性二相法、概率统计法(亦称蒙特卡洛法,Monte-Carlo)以及产量递减法(计算最终可储量);地下水方面,目前主要用数值法。

固体矿产方面,根据国内的应用实践,可以分为三大类:

1.2.1 传统方法

根据计算单元划分方式的不同,又可分为断面法和块段法两种。这两种方法是我国几十年来矿产勘查、开发过程中应用最为广泛的两大基本方法。

1.2.1.1 断面法(亦称剖面法)

依据断面之间的相互关系,进一步分为平行断面法、不平行断面法。

平行断面法,依据断面的方向,可分为:水平断面法和垂直断面法。水平断面法适用于利用水平中段计算储量,多用于坑道控制的矿体以及露天开矿床的储量计算。垂直断面法,依据断面位置的不同,可分为勘探线剖面法和线储量计算法。勘探线剖面法,要求用于储量计算的勘查工程(包括探槽、钻孔、坑道等)均位于勘探线剖面上,或偏离距离在允许范围内。线储量计算法,是以勘探线间的平分线为储量计算边界,逐个单元计算并累加,这种方法主要用于砂矿的储量计算。

平行断面法中,每个单元的储量计算方法主要有:梯形公式法、截锥公式法、楔形公式法、锥体公式法、似柱体公式法等;

不平行断面法:主要有普逻科菲耶夫计算法、佐洛塔列夫计算法。这两种方法,由于计算较为复杂,已经很少应用。

1.2.1.2块段法

依据块段划分原则的不同,可进一步分为:地质块段法、开块段法、最近地区法、三角形法、等值线法、等高线法等。

地质块段法,是勘探阶段计算储量较为常用的一种方法。其基本做法是将矿体投影到某个方向的平面上,按照矿石类型、品级、地质可靠程度的不同,并根据勘查工程分布特点,将其划分为若干个块段,分别计算储量并累加。这类方法,通常用于勘查工程分布比较均匀、勘查手段较为单一(以钻探为主)、勘查工程没有严格按照勘探线布置的矿区的储量计算。地质块段法按其投影方向的不同,还可分为垂直纵投影法、水平投影法和倾斜投影法。垂直纵投影法,适用于陡倾斜的矿体;水平投影法,适用于产状平缓的矿体;倾斜投影法,通常选择矿体倾斜面为其投影方向,理论上讲,适用中等倾斜矿体,但因其计算过程较为繁琐,一般不常应用,多以垂直纵投影法或水平投影法代替。

开块段法,适用于以坑道为主要勘探手段的矿区储量计算。基本做法是以坑道(包括部分钻孔)为边界划分大小不同的块段,分别计算储量并累加。该方法多用于生产矿区、基建矿区“”矿量的计算。

最近地区法(亦称多角形法),是根据矿体储量计算平面图(水平投影图或垂直纵投影图),以每个勘查工程为中心,取其与各相邻工程间距的1/2(有时根据地质规律用内插法确定距离)为边界点,将矿体划分为一系列紧密连接的多边形单元,再依据每个单元中心工程的资料,分别计算其储量并累加。这种方法,对于工程少、分布不均,各工程揭露的厚度、品位变化大,矿体形态复杂的情况,为了充分考虑各工程参数的影响范围时才使用,一般不用此方法。

等值线法,是利用矿体等厚线图或厚度 品位等值线图,分别计算各等值线范围内的体积、品位和储量。其优点是可以借助上述图件,形象地反映矿体形态、厚度、有用组分分布及变化规律;但缺点是制图复杂,特别是对于含有多种有用组分的矿区,必须按每种组分分别制图,所以,实际工作中也不常用。等高线法与之类似。

1.2.1.3 地质统计学方法

地质统计学方法,亦称克立格法,是由南非地质学家克里格创立的。目前,西方国家在矿业筹资、股票上市、矿业权交易过程中,基本都是用这种方法评价矿产,估算矿产储量;国际上一些较大的矿业公司、勘查公司以及矿业咨询公司,都已研制或拥有以地质统计学原理为基础的矿产评价软件,并已陆续进入我国矿业领域。

地质统计学方法,是以区域化变量理论为基础,以变异函数为主要工具,对既具有随机性、又具有结构性的变量进行统计学研究的一种方法。这种方法的使用,不仅提高了矿产评价的科学性,而且,也大大提高了矿产评价的效率;对于实行市场经济体制的国家,为使矿产评价及时反映市场因素的变化,实现矿产储量的动态管理,具有尤其突出的优越性。

地质统计学方法是一套方法系统。目前,在我国已有认识并获得应用的主要有:二维及三维普通克立格法、二维对数正态泛克立格法、二维指示克立格法、二维及三维协同克立格法以及三维泛克立格法。

1.2.1.4 SD法(最佳结构曲线断面积分储量计算法)

SD法是在原国家科委和地矿部支持下,我国自行研制的一种矿产储量计算方法。该方法以断面构形为核心,以最佳结构地质变量为基础,利用Spline函数和动态分维几何学为工具,进行矿产储量的计算。其最具特色的内容是根据SD精度法所确定的SD审定法基础,从定量角度定义矿产勘查工程控制程度和储量精度。

1.3 矿产储量估算方法的管理

目前,我国对矿产储量估算方法仍然实行较为严格的管理,除用传统方法计算储量外,用其他方法或软件,都必须要经过专家鉴定,取得国家储量管理部门认可,并予以公告后,方能用于生产实践。

到目前为止,我国经过认可的矿产储量计算方法和软件(固体矿产方面)主要有:

(1)KPX2.1版本(固体矿产勘查评价自动化系统)(中国地质大学(武汉)研制);

(2)《中文地勘系统软件》(CGES)(武警黄金指挥部从加拿大引进并汉化);

(3)三维普通克立格法程序系统(北京科技大学研制)

(4)GXPX交互式固体矿产勘查微机评价系统(福建省区调队研制);

(5)地质统计学在薄脉状金矿床品位优化估算系统(武警黄金研究所研制);

(6)SD法矿产储量计算软件(2.0版)(北京恩地科技发展有限责任公司);

(7)Minesight软件(2.5版)(美国Minetec公司研制,中国黄金总公司北京金迈泰克科技发展有限公司中国全权代理);

(8)Datemine软件(5.0版)(英国矿物工业计算有限公司研制,北京有色冶金设计总院引进)。

2 矿床工业指标

2.1 基本概念

矿床工业指标,是评价矿产储量质量特征的基本准则,是衡量矿床工业价值的重要依据,是圈定矿体、计算储量的基本参数。不同矿区、不同矿种,都有其特定的合理的工业指标。某一矿区矿床工业指标的确定,往往要综合考虑多种因素,包括方面的经济政策、政策、环保政策;市场方面(国内、国外)的供需情况、产品价格情况;宏观方面的形势、社会开发利用和加工技术水平;微观方面的产出特点、加工技术条件、可能的开发方式以及产品方案,等等。因此,某一具体矿床的工业指标,必须在一定勘查工作程度和相应的矿石选冶试验基础上,经过较为详细的技术经济论证和综合研究,方能合理确定。

2.2 矿床工业指标的主要内容

矿床工业指标,通常包括两个方面的内容,一是矿石质量方面的要求,一是开技术条件方面的要求。就金属矿产而言,矿石质量方面的要求主要有:边界品位、最低工业品位(单工程最低工业品位、块段最低工业品位、矿床最低工业品位)、有害组分最大允许含量、有益组分最低含量(综合评价指标)。开技术条件方面的要求主要有:最低可厚度、夹石剔除厚度;对于薄脉型矿体,还包括最低工业米百分值;对于露矿床,还有剥比、边坡角、最低露境界等方面的要求。

此外,针对某些矿产的特殊情况和要求,还可提出其他方面工业指标的要求;针对克里格方法,可以用单项品位指标;针对同体共生的贵金属或有色金属矿床,可以下达综合品位指标。

2.3 矿床工业指标的管理

按照现行管理制度,凡依据矿组(种)规范推荐的一般工业指标,无论勘查工作程度高低,只能估算量;需要提交基础储量和储量的,必须在完成一定程度选冶试验的基础上,由具有资质的矿山设计单位进行技术经济论证并出具专门材料,经业主认可批复后,方能作为估算基础储量和储量的依据。

3 矿石选冶试验程度

目前,应继续执行1987年全国储委、国家计委、国家经委发布的《矿产勘查各阶段选冶试验程度的暂行规定》(储发[1987]27号文)。

选冶试验程度划分为五种:可选(冶)性试验、实验室流程试验、实验室扩大连续试验、半工业试验、工业试验。

各勘查阶段的选冶试验程度要求:

(1)预查阶段:类比评价即可。

(2)普查阶段:一般矿产类比;组分复杂、难选及尚无成熟经验的矿产,要求做可选(冶)性试验或实验室流程试验。

(3)详查阶段:易选矿产:类比;一般矿产:做可选(冶)性试验或实验室流程试验;难选矿产:要求做实验室扩大连续试验。

(4)勘探阶段:易选矿产:做可选(冶)性试验或实验室流程试验;一般矿产:做实验室流程试验或实验室扩大连续试验;难选矿产:要求做半工业试验;建设大型矿山的,应当做工业试验。

4 矿体的圈定

矿体的圈定是储量估算较为关键的环节。理论上讲,矿体的圈定必须遵循地质规律,决不允许“见矿连矿”;实际上,矿体圈定是否合理,是否符合客观实际,不仅与对目的矿区地质规律的认识、研究程度有关,而且与地质工作者的经验和水平也有很大关系。根据我国几十年地质勘查工作经验总结和有关规定(原国家矿产储量管理局1991年国储[1991]164号文),结合现行矿种规范的有关规定,传统方法估算矿产储量过程中的矿体圈定,大致需要掌握如下原则:

4.1 单工程矿体边界的圈定

(1)依据边界品位和夹石剔除厚度指标初步确定矿体边界与矿体中的夹石;

(2)依据单工程最低工业品位和最低可厚度指标,调整矿体边界和矿石与夹石的界限;

(3)关于“穿鞋戴帽”问题。所谓“穿鞋戴帽”,是指中部品位较高的矿体,在单工程圈定边界时,将上、下部介于边界品位与最低工业品位的样品带入的现象。通常的做法是允许带入相当于“夹石剔除厚度”以内的样品;当连续出现多个介于边界品位与最低工业品位的样品,并且厚度大成片出现时,应单独圈出;

(4)多组分矿体的圈定,可用“混圈法”。即单工程中只要有一种组分达到边界品位和最低可厚度要求,就可圈入矿体;若有两种或两种以上组分达到最低工业品位要求,并在整个矿体或矿床中具有一定规模,即为共生矿;未能达到边界品位要求的,但能够回收利用的,即为伴生矿。

4.2 矿体的连接

4.2.1 相邻见矿工程之间的矿体连接

(1)相邻见矿工程之间的矿体,一般用直线对应连接;在有充分的地质依据时,也可用曲线连接;

(2)用曲线连接时,矿体任意位置的厚度,不得大于相邻工程实际控制的矿体最大厚度;

(3)当相邻见矿工程之间,出现破矿断层或岩脉时,应依据地质规律合理连接。

4.2.2 矿体的有限外推

当位于某一地质可靠程度对应网度范围内的两个相邻工程,一个见矿,一个未见矿时,矿体的圈连称为有限外推。

(1)当矿体长度与厚度存在正相关关系并经过足够的统计资料证实时,可以根据见矿工程控制的实际厚度,按照比例外推;

(2)无规律可循时,一般按工程间距的1/2尖推或1/4平推;当边部工程存在矿化现象(工程品位在边界品位的1/2以上)时,则可按工程间距的2/3尖推或1/3平推;

(3)见矿工程为米百分值或米克吨值工程时,一般不得外推;但对于薄脉型矿体,则可酌情外推。

4.2.3 矿体的无限外推

当见矿工程之外没有工程控制,或未见矿工程距离见矿工程较远(距离大于相应地质可靠程度对应网度)时,矿体的圈连称为无限外推。无限外推时,若矿体长度与厚度之间无规律可循,一般按相应地质可靠程度所对应网度的1/2尖推或1/4平推。

4.3块段的划分

块段是储量计算的基本单元,块段划分是否合理直接影响储量估算的精度。一般情况下,块段划分应当把握如下几项原则:

(1)不宜过大,也不宜过小。一般沿矿体走向上以两相邻勘探线为限,倾向方向上以两相邻工程连线为界;

(2)同一块段内,矿体要连续,产状要稳定;需要分别计算储量时,矿石类型、工业品级要相同;

(3)同一块段的地质可靠程度必须相同。

5 矿产储量估算中主要参数的计算

5.1 矿体厚度的计算

矿产储量估算过程中,常用到三种厚度:水平厚度、垂直厚度、真厚度。选取那种厚度,视估算方法而定。用纵投影面积时,应计算平均水平厚度;用水平投影面积时,应计算平均垂直厚度;用真面积时,应计算平均真厚度。

平均厚度,一般用算术平均法计算,当工程分布很不均匀或厚度变化很大时,应当用影响长度或面积加权计算。

5.2 平均品位的计算

矿产储量估算过程中,常需要计算单工程平均品位、块段平均品位和矿体平均品位。当样长度变化不大,品位变化比较均匀时,可以用算术平均法计算。当样长度变化大,或品位很不均匀时,需要用加权平均法计算;计算单工程平均品位时,应当用样品长度加权;计算块段平均品位时,应当用矿体截面面积加权;计算矿体平均品位时,应当用块段投影面积加权。当矿区勘查工作程度低、样品数量较少、品位变化又较大时,应当用几何平均数法求取矿体的平均品位。

5.3 特高品位的确定与处理

特高品位的存在,对矿产储量的估算结果影响很大。特别是在一些贵金属和有色金属矿床中,特高品位会经常出现,若不予处理,将会使矿产储量估算结果产生严重偏差。当有怀疑特高品位存在时,首先应对副样进行第二次分析,如果第二次分析结果在允许误差范围内时,再作特高品位判断(确定特高品位下限值)。

特高品位下限值的确定方法很多。克立格法和SD法,用统计学方法,确定过程比较复杂;也可以用经验法,比较简单。根据国储[1991]164号文的有关规定,对于有色和贵金属矿产,特高品位的下限值,一般可确定为矿体平均品位的6~8倍,矿体品位变化系数大时,取上限值;变化系数小时,取下限制。特高品位处理时,通常不要使其影响范围过大,以用特高品位所影响的块段平均品位代替为宜;当矿体厚大时,也可以用特高品位所在的单工程平均品位代替。

特高品位处理后,单工程平均品位、块段平均品位以及矿体平均品位均须重新计算。

5.4 体重的计算

体重是矿产储量估算的一项重要参数,必须认真对待体重样的集和计算。

小体重样的集,一方面,要注意样品的代表性,包括空间分布的均匀性和矿石类型、品位区间上的代表性;另一方面,要保证样品的数量,通常主要矿石类型的小体重样品不应少于30个,确因样品有限无法保证数量时,应尽量集与矿体平均品位接近,并且矿物组成、结构构造等矿石特征代表性好的小体重样品。

在测定小体重的同时,为了评价其代表性,一般应作化学分析;湿度较大的矿石,应同时测定湿度;对于松散、多孔、裂隙发育的矿石,应集少量大体重样(规格0.5m×0.5m×0.5m),测定大体重。

矿产储量估算过程中,一般用矿区平均体重值统一参与计算。矿区平均体重,通常在经过样品代表性论证和取舍后,用全区有效小体重的算术平均法求取;对于体重与矿石类型或品级存在相关关系的情况,应根据各矿石类型或相应品级在全矿区所占比例,合理选择参与计算的小体重样品后,才能计算矿区平均体重;对于松散、多孔、裂隙发育的矿石,应用大体重进行校正;湿度大于3%时,应进行湿度校正。

需要分矿石类型估算储量时,平均体重应按不同矿石类型分别计算。当矿区矿石类型较为单一、体重变化也不大时,可以用全矿区所有样品的算术平均值,参与储量的估算。

6 矿产储量报告的基本形式

6.1 矿产勘查报告

主要用于矿产勘查工作的阶段性总结或最终总结。报告编写执行《固体矿产勘查/矿山闭坑地质报告编写规范》(DZ/T 0033—2002)中附录A“固体矿产地质勘查报告编写提纲”;用地质统计学方法估算储量的,报告储量估算部分的编写执行附录B“运用地质统计学方法估算/储量的固体矿产地质勘查报告中储量估算部分的编写提纲”。

6.2 矿山闭坑地质报告或矿山阶段性储量注销报告

主要是指在矿山关闭或阶段性关闭环节注销储量而编制的专门报告。报告编写执行《固体矿产勘查/矿山闭坑地质报告编写规范》(DZ/T 0033—2002)中附录C“固体矿产矿山闭坑地质报告编写提纲”。

6.3 矿产储量核实报告

主要是指矿山企业改制、矿权转让以及矿业企业上市过程中,需要对矿山占用的矿产储量进行核实而专门编制的报告;也包括建设项目压覆矿产储量而需要编制的报告。报告编写执行2007年2月6日国土部发布的《固体矿产储量核实报告编写规定》(国土资发[2007]26号)。

6.4 矿产储量检测地质报告

主要是为适应储量登记统计、储量动态监测以及矿权管理的需要,针对小矿、民矿以及砂石粘土矿等需要专门编制的报告。报告编制目前尚无统一要求,1996年原地矿部局发布的《简测计算占用矿产储量的若干说明》中涉及部分要求,大部分省(自治区、直辖市)对简测地质报告的编写已作了相应规定,可参照执行。

7 矿产储量报告的完备程度

按照现行规定,完整的矿产储量报告应当包括如下主要内容:

7.1 文字报告

7.2 主要附件

(1)矿业权权属证明材料;

(2)勘查资格证书复印件;

(3)出资人与勘查单位签订的勘查合同或勘查协议;

(4)矿床工业指标论证材料以及相应批件;

(5)矿石选冶加工技术试验报告;

(6)矿山建设可行性研究报告或预可行性研究报告以及相应批件;

(7)其他有关专题报告。

7.3 主要附图

(1)矿区或矿床地质地形图(1:1000~1:2000);

(2)取样平面图(包括地表取样平面图、中段取样平面图);

(3)钻孔柱状图以及探槽、坑道素描图;

(4)勘探线剖面图或储量计算剖面图;

(5)矿体纵投影图或水平投影图;

(6)其他需要的图件。

7.4 主要附表

(1)基本分析结果表以及化学全分析结果表;

(2)样品分析内检、外检结果表;

(3)钻探工程质量评定表;

(4)小体重测定结果表;

(5)单工程矿体平均品位、体重计算表(槽探、坑探、钻探);

(6)单工程矿体厚度计算表(水平厚度或垂直厚度、真厚度,槽、坑探与钻探分别造册);

(7)块段平均品位、厚度、体重计算表;

(8)块段(或剖面)面积计算表;

(9)块段储量计算表;

(10)矿体储量计算表;

(11)矿区储量计算表;

(12)其他需要的表格。

天然气作为一种清洁能源,被广泛应用于工业、交通、生活等领域。我国天然气储量丰富,但目前天然气的利用率仍然不高,天然气产业的发展面临着诸多挑战。

天然气十二五规划的制定背景

为了推动天然气产业的健康发展,我国制定了天然气十二五规划。该规划旨在提高天然气的利用率,促进天然气产业的协调发展。

天然气十二五规划的主要内容

天然气十二五规划的主要内容包括以下几个方面:

一、加强天然气勘探和开发

通过加强天然气勘探和开发,提高天然气储量和产量,保障天然气供应。

二、加快天然气管网建设

加快天然气管网建设,提高天然气的输送能力和覆盖面积,为天然气的利用提供更好的条件。

三、推广天然气应用技术

推广天然气应用技术,提高天然气的利用效率和环保性能,促进天然气在工业、交通、生活等领域的广泛应用。

四、完善天然气价格机制

完善天然气价格机制,建立健全的市场化运作机制,促进天然气产业的健康发展。

天然气十二五规划的实施效果

天然气十二五规划的实施效果显著。截至目前,我国天然气储量和产量均有所提高,天然气管网建设取得了重要进展,天然气在工业、交通、生活等领域的应用也得到了大力推广。