1.与矿产储量估算和报告编制有关的基本概念

2.矿产储量计算的计算方法

3.油气储量是怎样计算的?

4.储量的意思是什么三年级

5.油气地质储量计算的方法是什么?

天然气动态储量计算方法是什么意思啊怎么算啊_天然气动态压力多少

计算煤层气量的方法较多,有“含气量法”(又称“容积法”)、“压降曲线法”、“产量递减法”、“类比法”、“物质平衡法”、“气藏数值模拟法”等。

由于煤层气藏是一种裂隙—孔隙型双重孔隙介质、气液两相的储集类型,气井的动态与常规天然气不同,所以只有用容积和气藏数值模拟法比较适应于计算煤层气量,而其他方法误差较大,以致无法应用。目前国内的煤储层数值模拟资料极少。因此,本书用容积法对西北地区煤层气的量进行计算。应当指出,容积法也是石油和常规天然气量计算中常用的一种方法。

表6-1 部分西北地区煤层气量预测结果

容积法是计算煤层气量的主要方法。其公式为:

中国西北煤层气地质与综合评价

式中,Q——煤层气量(m3);A——计算范围的面积(m2);H——煤层厚度(m);D1——煤的密度(t/m3);C——煤层气含量(m3/t)。

如果已知计算范围内的煤炭量M(储量)值(单位t),则上述公式可简化为:

中国西北煤层气地质与综合评价

在本次工作中,主要收集了根据煤炭储量规范,分矿井(勘探区)和预测区、分煤层、分水平计算统计而求得的系统的煤炭量(储量)数据。从数据资料的精确性和可靠程度考虑,我们用公式(6-2)进行煤层气量计算。

煤层气含量用纯甲烷气含量。煤层气含量根据以下方法确定:

1)在煤田勘探阶段进行过煤层气含量测试矿区,用各数据点煤层气含量的算术平均值。

2)无实测气含量且煤层埋深小于1 000 m的块段,根据地质条件以及煤变质等因素,用类比的方法确定煤层气含量。

3)根据各盆地实际资料计算的饱和度、煤变质情况及不同深度煤储层压力,利用平衡水法测试的等温吸附曲线,求得不同深度煤层含气量。

与矿产储量估算和报告编制有关的基本概念

如果按照每年使用量增幅为2%-3%来计算的话,剩余的天然气大约只能用80到100年了。一方面是天然气的探明储量在不断增长,另一方面作为替代能源的可再生能源也在迅猛增长中。

现在世界上大量天然气来源于非常规天然气,比如页岩气,煤层气,这些未探明还很多,包括南海的可燃冰,还不具备开条件,所以天然气实际上可用更多年,并且俄罗斯和中亚缅甸已经开式进口天然气了,液化天然气进口量也很大,所以不用担心天然气未来的前景。

天然气是属于不可再生能源,因为天然气不可以进行第二次利用。

天然气是一种碳氢化合物,多是在矿区开原油时伴随而出, 过去因无法越洋运送,所以只能供当地使用,如果有剩馀只好燃烧报废,十分可惜。若以人工建筑设施存放天然气,在遭到外力破坏如地震、火灾等,极易产生危险。若以人工建筑设施存放天然气,在遭到外力破坏如地震、火灾等,极易产生危险。

矿产储量计算的计算方法

周圣华

作者简介:周圣华,中国有色金属矿产地质调查中心,地质处处长,高级工程师,矿产储量评估师。

1 矿产储量估算方法

1.1 基本概念

矿产储量估算方法,是指矿产埋藏量估算过程中,各种参数及其储量的计算方法和相应软件的统称。由于矿产赋存方式千差万别,开发利用方式也不尽相同,因此,必须要研究适合不同矿种的矿产储量估算方法。根据我国矿产勘查开发过程中的应用实践,就矿产储量估算方法选择的角度,可以将矿产划分为三大类:第一类是固体矿产,包括金属矿产、非金属矿产和煤;第二类是石油、天然气、煤层气;第三类是地下水。

1.2 矿产储量估算方法的主要种类

关于矿产储量估算方法,可以参照由国土部储量司组织编著,2000年4月由地质出版社发行的《矿产储量计算方法汇编》。

油气方面,用于储量估算的方法主要有容积法、物质平衡法、弹性二相法、概率统计法(亦称蒙特卡洛法,Monte-Carlo)以及产量递减法(计算最终可储量);地下水方面,目前主要用数值法。

固体矿产方面,根据国内的应用实践,可以分为三大类:

1.2.1 传统方法

根据计算单元划分方式的不同,又可分为断面法和块段法两种。这两种方法是我国几十年来矿产勘查、开发过程中应用最为广泛的两大基本方法。

1.2.1.1 断面法(亦称剖面法)

依据断面之间的相互关系,进一步分为平行断面法、不平行断面法。

平行断面法,依据断面的方向,可分为:水平断面法和垂直断面法。水平断面法适用于利用水平中段计算储量,多用于坑道控制的矿体以及露天开矿床的储量计算。垂直断面法,依据断面位置的不同,可分为勘探线剖面法和线储量计算法。勘探线剖面法,要求用于储量计算的勘查工程(包括探槽、钻孔、坑道等)均位于勘探线剖面上,或偏离距离在允许范围内。线储量计算法,是以勘探线间的平分线为储量计算边界,逐个单元计算并累加,这种方法主要用于砂矿的储量计算。

平行断面法中,每个单元的储量计算方法主要有:梯形公式法、截锥公式法、楔形公式法、锥体公式法、似柱体公式法等;

不平行断面法:主要有普逻科菲耶夫计算法、佐洛塔列夫计算法。这两种方法,由于计算较为复杂,已经很少应用。

1.2.1.2块段法

依据块段划分原则的不同,可进一步分为:地质块段法、开块段法、最近地区法、三角形法、等值线法、等高线法等。

地质块段法,是勘探阶段计算储量较为常用的一种方法。其基本做法是将矿体投影到某个方向的平面上,按照矿石类型、品级、地质可靠程度的不同,并根据勘查工程分布特点,将其划分为若干个块段,分别计算储量并累加。这类方法,通常用于勘查工程分布比较均匀、勘查手段较为单一(以钻探为主)、勘查工程没有严格按照勘探线布置的矿区的储量计算。地质块段法按其投影方向的不同,还可分为垂直纵投影法、水平投影法和倾斜投影法。垂直纵投影法,适用于陡倾斜的矿体;水平投影法,适用于产状平缓的矿体;倾斜投影法,通常选择矿体倾斜面为其投影方向,理论上讲,适用中等倾斜矿体,但因其计算过程较为繁琐,一般不常应用,多以垂直纵投影法或水平投影法代替。

开块段法,适用于以坑道为主要勘探手段的矿区储量计算。基本做法是以坑道(包括部分钻孔)为边界划分大小不同的块段,分别计算储量并累加。该方法多用于生产矿区、基建矿区“”矿量的计算。

最近地区法(亦称多角形法),是根据矿体储量计算平面图(水平投影图或垂直纵投影图),以每个勘查工程为中心,取其与各相邻工程间距的1/2(有时根据地质规律用内插法确定距离)为边界点,将矿体划分为一系列紧密连接的多边形单元,再依据每个单元中心工程的资料,分别计算其储量并累加。这种方法,对于工程少、分布不均,各工程揭露的厚度、品位变化大,矿体形态复杂的情况,为了充分考虑各工程参数的影响范围时才使用,一般不用此方法。

等值线法,是利用矿体等厚线图或厚度 品位等值线图,分别计算各等值线范围内的体积、品位和储量。其优点是可以借助上述图件,形象地反映矿体形态、厚度、有用组分分布及变化规律;但缺点是制图复杂,特别是对于含有多种有用组分的矿区,必须按每种组分分别制图,所以,实际工作中也不常用。等高线法与之类似。

1.2.1.3 地质统计学方法

地质统计学方法,亦称克立格法,是由南非地质学家克里格创立的。目前,西方国家在矿业筹资、股票上市、矿业权交易过程中,基本都是用这种方法评价矿产,估算矿产储量;国际上一些较大的矿业公司、勘查公司以及矿业咨询公司,都已研制或拥有以地质统计学原理为基础的矿产评价软件,并已陆续进入我国矿业领域。

地质统计学方法,是以区域化变量理论为基础,以变异函数为主要工具,对既具有随机性、又具有结构性的变量进行统计学研究的一种方法。这种方法的使用,不仅提高了矿产评价的科学性,而且,也大大提高了矿产评价的效率;对于实行市场经济体制的国家,为使矿产评价及时反映市场因素的变化,实现矿产储量的动态管理,具有尤其突出的优越性。

地质统计学方法是一套方法系统。目前,在我国已有认识并获得应用的主要有:二维及三维普通克立格法、二维对数正态泛克立格法、二维指示克立格法、二维及三维协同克立格法以及三维泛克立格法。

1.2.1.4 SD法(最佳结构曲线断面积分储量计算法)

SD法是在原国家科委和地矿部支持下,我国自行研制的一种矿产储量计算方法。该方法以断面构形为核心,以最佳结构地质变量为基础,利用Spline函数和动态分维几何学为工具,进行矿产储量的计算。其最具特色的内容是根据SD精度法所确定的SD审定法基础,从定量角度定义矿产勘查工程控制程度和储量精度。

1.3 矿产储量估算方法的管理

目前,我国对矿产储量估算方法仍然实行较为严格的管理,除用传统方法计算储量外,用其他方法或软件,都必须要经过专家鉴定,取得国家储量管理部门认可,并予以公告后,方能用于生产实践。

到目前为止,我国经过认可的矿产储量计算方法和软件(固体矿产方面)主要有:

(1)KPX2.1版本(固体矿产勘查评价自动化系统)(中国地质大学(武汉)研制);

(2)《中文地勘系统软件》(CGES)(武警黄金指挥部从加拿大引进并汉化);

(3)三维普通克立格法程序系统(北京科技大学研制)

(4)GXPX交互式固体矿产勘查微机评价系统(福建省区调队研制);

(5)地质统计学在薄脉状金矿床品位优化估算系统(武警黄金研究所研制);

(6)SD法矿产储量计算软件(2.0版)(北京恩地科技发展有限责任公司);

(7)Minesight软件(2.5版)(美国Minetec公司研制,中国黄金总公司北京金迈泰克科技发展有限公司中国全权代理);

(8)Datemine软件(5.0版)(英国矿物工业计算有限公司研制,北京有色冶金设计总院引进)。

2 矿床工业指标

2.1 基本概念

矿床工业指标,是评价矿产储量质量特征的基本准则,是衡量矿床工业价值的重要依据,是圈定矿体、计算储量的基本参数。不同矿区、不同矿种,都有其特定的合理的工业指标。某一矿区矿床工业指标的确定,往往要综合考虑多种因素,包括方面的经济政策、政策、环保政策;市场方面(国内、国外)的供需情况、产品价格情况;宏观方面的形势、社会开发利用和加工技术水平;微观方面的产出特点、加工技术条件、可能的开发方式以及产品方案,等等。因此,某一具体矿床的工业指标,必须在一定勘查工作程度和相应的矿石选冶试验基础上,经过较为详细的技术经济论证和综合研究,方能合理确定。

2.2 矿床工业指标的主要内容

矿床工业指标,通常包括两个方面的内容,一是矿石质量方面的要求,一是开技术条件方面的要求。就金属矿产而言,矿石质量方面的要求主要有:边界品位、最低工业品位(单工程最低工业品位、块段最低工业品位、矿床最低工业品位)、有害组分最大允许含量、有益组分最低含量(综合评价指标)。开技术条件方面的要求主要有:最低可厚度、夹石剔除厚度;对于薄脉型矿体,还包括最低工业米百分值;对于露矿床,还有剥比、边坡角、最低露境界等方面的要求。

此外,针对某些矿产的特殊情况和要求,还可提出其他方面工业指标的要求;针对克里格方法,可以用单项品位指标;针对同体共生的贵金属或有色金属矿床,可以下达综合品位指标。

2.3 矿床工业指标的管理

按照现行管理制度,凡依据矿组(种)规范推荐的一般工业指标,无论勘查工作程度高低,只能估算量;需要提交基础储量和储量的,必须在完成一定程度选冶试验的基础上,由具有资质的矿山设计单位进行技术经济论证并出具专门材料,经业主认可批复后,方能作为估算基础储量和储量的依据。

3 矿石选冶试验程度

目前,应继续执行1987年全国储委、国家计委、国家经委发布的《矿产勘查各阶段选冶试验程度的暂行规定》(储发[1987]27号文)。

选冶试验程度划分为五种:可选(冶)性试验、实验室流程试验、实验室扩大连续试验、半工业试验、工业试验。

各勘查阶段的选冶试验程度要求:

(1)预查阶段:类比评价即可。

(2)普查阶段:一般矿产类比;组分复杂、难选及尚无成熟经验的矿产,要求做可选(冶)性试验或实验室流程试验。

(3)详查阶段:易选矿产:类比;一般矿产:做可选(冶)性试验或实验室流程试验;难选矿产:要求做实验室扩大连续试验。

(4)勘探阶段:易选矿产:做可选(冶)性试验或实验室流程试验;一般矿产:做实验室流程试验或实验室扩大连续试验;难选矿产:要求做半工业试验;建设大型矿山的,应当做工业试验。

4 矿体的圈定

矿体的圈定是储量估算较为关键的环节。理论上讲,矿体的圈定必须遵循地质规律,决不允许“见矿连矿”;实际上,矿体圈定是否合理,是否符合客观实际,不仅与对目的矿区地质规律的认识、研究程度有关,而且与地质工作者的经验和水平也有很大关系。根据我国几十年地质勘查工作经验总结和有关规定(原国家矿产储量管理局1991年国储[1991]164号文),结合现行矿种规范的有关规定,传统方法估算矿产储量过程中的矿体圈定,大致需要掌握如下原则:

4.1 单工程矿体边界的圈定

(1)依据边界品位和夹石剔除厚度指标初步确定矿体边界与矿体中的夹石;

(2)依据单工程最低工业品位和最低可厚度指标,调整矿体边界和矿石与夹石的界限;

(3)关于“穿鞋戴帽”问题。所谓“穿鞋戴帽”,是指中部品位较高的矿体,在单工程圈定边界时,将上、下部介于边界品位与最低工业品位的样品带入的现象。通常的做法是允许带入相当于“夹石剔除厚度”以内的样品;当连续出现多个介于边界品位与最低工业品位的样品,并且厚度大成片出现时,应单独圈出;

(4)多组分矿体的圈定,可用“混圈法”。即单工程中只要有一种组分达到边界品位和最低可厚度要求,就可圈入矿体;若有两种或两种以上组分达到最低工业品位要求,并在整个矿体或矿床中具有一定规模,即为共生矿;未能达到边界品位要求的,但能够回收利用的,即为伴生矿。

4.2 矿体的连接

4.2.1 相邻见矿工程之间的矿体连接

(1)相邻见矿工程之间的矿体,一般用直线对应连接;在有充分的地质依据时,也可用曲线连接;

(2)用曲线连接时,矿体任意位置的厚度,不得大于相邻工程实际控制的矿体最大厚度;

(3)当相邻见矿工程之间,出现破矿断层或岩脉时,应依据地质规律合理连接。

4.2.2 矿体的有限外推

当位于某一地质可靠程度对应网度范围内的两个相邻工程,一个见矿,一个未见矿时,矿体的圈连称为有限外推。

(1)当矿体长度与厚度存在正相关关系并经过足够的统计资料证实时,可以根据见矿工程控制的实际厚度,按照比例外推;

(2)无规律可循时,一般按工程间距的1/2尖推或1/4平推;当边部工程存在矿化现象(工程品位在边界品位的1/2以上)时,则可按工程间距的2/3尖推或1/3平推;

(3)见矿工程为米百分值或米克吨值工程时,一般不得外推;但对于薄脉型矿体,则可酌情外推。

4.2.3 矿体的无限外推

当见矿工程之外没有工程控制,或未见矿工程距离见矿工程较远(距离大于相应地质可靠程度对应网度)时,矿体的圈连称为无限外推。无限外推时,若矿体长度与厚度之间无规律可循,一般按相应地质可靠程度所对应网度的1/2尖推或1/4平推。

4.3块段的划分

块段是储量计算的基本单元,块段划分是否合理直接影响储量估算的精度。一般情况下,块段划分应当把握如下几项原则:

(1)不宜过大,也不宜过小。一般沿矿体走向上以两相邻勘探线为限,倾向方向上以两相邻工程连线为界;

(2)同一块段内,矿体要连续,产状要稳定;需要分别计算储量时,矿石类型、工业品级要相同;

(3)同一块段的地质可靠程度必须相同。

5 矿产储量估算中主要参数的计算

5.1 矿体厚度的计算

矿产储量估算过程中,常用到三种厚度:水平厚度、垂直厚度、真厚度。选取那种厚度,视估算方法而定。用纵投影面积时,应计算平均水平厚度;用水平投影面积时,应计算平均垂直厚度;用真面积时,应计算平均真厚度。

平均厚度,一般用算术平均法计算,当工程分布很不均匀或厚度变化很大时,应当用影响长度或面积加权计算。

5.2 平均品位的计算

矿产储量估算过程中,常需要计算单工程平均品位、块段平均品位和矿体平均品位。当样长度变化不大,品位变化比较均匀时,可以用算术平均法计算。当样长度变化大,或品位很不均匀时,需要用加权平均法计算;计算单工程平均品位时,应当用样品长度加权;计算块段平均品位时,应当用矿体截面面积加权;计算矿体平均品位时,应当用块段投影面积加权。当矿区勘查工作程度低、样品数量较少、品位变化又较大时,应当用几何平均数法求取矿体的平均品位。

5.3 特高品位的确定与处理

特高品位的存在,对矿产储量的估算结果影响很大。特别是在一些贵金属和有色金属矿床中,特高品位会经常出现,若不予处理,将会使矿产储量估算结果产生严重偏差。当有怀疑特高品位存在时,首先应对副样进行第二次分析,如果第二次分析结果在允许误差范围内时,再作特高品位判断(确定特高品位下限值)。

特高品位下限值的确定方法很多。克立格法和SD法,用统计学方法,确定过程比较复杂;也可以用经验法,比较简单。根据国储[1991]164号文的有关规定,对于有色和贵金属矿产,特高品位的下限值,一般可确定为矿体平均品位的6~8倍,矿体品位变化系数大时,取上限值;变化系数小时,取下限制。特高品位处理时,通常不要使其影响范围过大,以用特高品位所影响的块段平均品位代替为宜;当矿体厚大时,也可以用特高品位所在的单工程平均品位代替。

特高品位处理后,单工程平均品位、块段平均品位以及矿体平均品位均须重新计算。

5.4 体重的计算

体重是矿产储量估算的一项重要参数,必须认真对待体重样的集和计算。

小体重样的集,一方面,要注意样品的代表性,包括空间分布的均匀性和矿石类型、品位区间上的代表性;另一方面,要保证样品的数量,通常主要矿石类型的小体重样品不应少于30个,确因样品有限无法保证数量时,应尽量集与矿体平均品位接近,并且矿物组成、结构构造等矿石特征代表性好的小体重样品。

在测定小体重的同时,为了评价其代表性,一般应作化学分析;湿度较大的矿石,应同时测定湿度;对于松散、多孔、裂隙发育的矿石,应集少量大体重样(规格0.5m×0.5m×0.5m),测定大体重。

矿产储量估算过程中,一般用矿区平均体重值统一参与计算。矿区平均体重,通常在经过样品代表性论证和取舍后,用全区有效小体重的算术平均法求取;对于体重与矿石类型或品级存在相关关系的情况,应根据各矿石类型或相应品级在全矿区所占比例,合理选择参与计算的小体重样品后,才能计算矿区平均体重;对于松散、多孔、裂隙发育的矿石,应用大体重进行校正;湿度大于3%时,应进行湿度校正。

需要分矿石类型估算储量时,平均体重应按不同矿石类型分别计算。当矿区矿石类型较为单一、体重变化也不大时,可以用全矿区所有样品的算术平均值,参与储量的估算。

6 矿产储量报告的基本形式

6.1 矿产勘查报告

主要用于矿产勘查工作的阶段性总结或最终总结。报告编写执行《固体矿产勘查/矿山闭坑地质报告编写规范》(DZ/T 0033—2002)中附录A“固体矿产地质勘查报告编写提纲”;用地质统计学方法估算储量的,报告储量估算部分的编写执行附录B“运用地质统计学方法估算/储量的固体矿产地质勘查报告中储量估算部分的编写提纲”。

6.2 矿山闭坑地质报告或矿山阶段性储量注销报告

主要是指在矿山关闭或阶段性关闭环节注销储量而编制的专门报告。报告编写执行《固体矿产勘查/矿山闭坑地质报告编写规范》(DZ/T 0033—2002)中附录C“固体矿产矿山闭坑地质报告编写提纲”。

6.3 矿产储量核实报告

主要是指矿山企业改制、矿权转让以及矿业企业上市过程中,需要对矿山占用的矿产储量进行核实而专门编制的报告;也包括建设项目压覆矿产储量而需要编制的报告。报告编写执行2007年2月6日国土部发布的《固体矿产储量核实报告编写规定》(国土资发[2007]26号)。

6.4 矿产储量检测地质报告

主要是为适应储量登记统计、储量动态监测以及矿权管理的需要,针对小矿、民矿以及砂石粘土矿等需要专门编制的报告。报告编制目前尚无统一要求,1996年原地矿部局发布的《简测计算占用矿产储量的若干说明》中涉及部分要求,大部分省(自治区、直辖市)对简测地质报告的编写已作了相应规定,可参照执行。

7 矿产储量报告的完备程度

按照现行规定,完整的矿产储量报告应当包括如下主要内容:

7.1 文字报告

7.2 主要附件

(1)矿业权权属证明材料;

(2)勘查资格证书复印件;

(3)出资人与勘查单位签订的勘查合同或勘查协议;

(4)矿床工业指标论证材料以及相应批件;

(5)矿石选冶加工技术试验报告;

(6)矿山建设可行性研究报告或预可行性研究报告以及相应批件;

(7)其他有关专题报告。

7.3 主要附图

(1)矿区或矿床地质地形图(1:1000~1:2000);

(2)取样平面图(包括地表取样平面图、中段取样平面图);

(3)钻孔柱状图以及探槽、坑道素描图;

(4)勘探线剖面图或储量计算剖面图;

(5)矿体纵投影图或水平投影图;

(6)其他需要的图件。

7.4 主要附表

(1)基本分析结果表以及化学全分析结果表;

(2)样品分析内检、外检结果表;

(3)钻探工程质量评定表;

(4)小体重测定结果表;

(5)单工程矿体平均品位、体重计算表(槽探、坑探、钻探);

(6)单工程矿体厚度计算表(水平厚度或垂直厚度、真厚度,槽、坑探与钻探分别造册);

(7)块段平均品位、厚度、体重计算表;

(8)块段(或剖面)面积计算表;

(9)块段储量计算表;

(10)矿体储量计算表;

(11)矿区储量计算表;

(12)其他需要的表格。

油气储量是怎样计算的?

按照矿块体积几何形状的不同,储量计算方法可分为:

①多角形法,又称最近地区法,以每一勘探工程见矿厚度为中心,推向各相邻工程距离的二分之一处,形成一多棱柱形体矿块;

②三角形法,以每3个相邻勘探工程见矿的平均厚度为三角棱柱体矿块的高;

③开块段法,以坑道工程为界,把矿体切割成若干板形矿块;

④地质块段法,按地质构造和开条件相同的原则划分矿块;

⑤断面法,又称剖面法,是将每两条相邻勘探线剖面间的矿体作为一个矿块;

⑥等高线法,对产状和厚度稳定的沉积矿床,以矿层顶板或底板等高线图为基础,将矿层倾角相近的地段划分为一个矿块;

⑦等值线法,利用矿体等厚线图或矿体厚度与品位乘积等值线图,将两等值线间的矿体划为一个矿块。矿块划分以后,视其几何形状选用公式计算体积和储量。

20世纪60年代以来,国际上用电了计算机计算矿产储量,使地质统计学等计算量大而结果较为精确的计算方法得以推广应用,它与传统储量计算方法的区别是:不单纯以矿块中的工程求得储量计算的参数(如品位)来计算该矿块的储量,而是考虑矿体中样品与周围样品分布的空间位置(包含方向和距离)的相关关系,来计算矿块的品位和储量。这些方法在中国正在用已知矿床作实例,研究它的适用条件和范围。

石油及天然气地质储量计算

主要用容积法。石油的计算公式为

式中N为石油地质储量(万吨);A为含油面积(平方千米);h为平均有效厚度(米);Φ为平均有效孔隙度;Swi为平均油层原始含水饱和度;ρ0为平均地面原油密度(吨每立方米);B0i为平均原始原油体积系数。

地层原油中的原始溶解气地质储量Gs(亿立方米)的计算公式为

Gs=10-4N·Rsi

式中Rsi为原始溶解气油比(立方米每吨)。

此外,物质平衡法是利用生产资料计算石油动态地质储量的方法。计算油田的探明储量,除应分别计算石油及溶解气的地质储量外,还要计算地质储量中能够出获得社会经济效益的可储量。可储量不仅与油藏类型、储层物性、流体性质、驱动类型等自然条件有关,而且与油时布井方式、注入方式、油工艺、油田管理水平以及经济条件等人为因素有关。随着油田勘探开发工作的进展,经济技术条件的改善,应合理选择有关资料、参数和经验公式,定期计算或复核可储量。

天然气的地质储量一般用容积法

其计算公式为

式中G为气田的原始地质储量(亿立方米);A为含气面积(平方千米);h为平均有效厚度(米);Φ为平均有效孔隙度;Swi为平均原始含水饱和度;T为气层温度(开尔文);Tsc为地面标准温度(开尔文);Psc为地面标准压力(兆帕);Pi为气田的原始地层压力(兆帕);Zi为原始气体偏差系数。

将容积法求得的天然气地质储量乘以天然气收率,求得可储量。

地下水水量计算

评价地下水水量是指人类可资利用的地下水水量。根据需要,结合地区的水文地质条件,分别计算地下水的补给量(单位时间内流入含水层的地下水总量)、储存量(储存于含水层内的重力水体积)、可开量。作为供水水源地,主要计算可开量。可开量是指在一定的技术经济条件下,用合理开方案和合理开动态,在整个开期间不明显袭夺已有水源地,不发生危害性的环境地质问题的前提下,允许开的水量,其中包括开时可夺取的天然补给量或排泄量、开条件下的激发补给量、可利用的储存量和人工补给量。地下水既不同于固体矿产,它具有流动性,也不同于石油天然气矿产,它还具有恢复性。因此评价时必须在查明地下水的补给、径流、排泄条件和预测它在开过程中可能发生水量水质变化的情况下,分别按水源地水文地质条件,含水介质类型(孔隙性介质、岩溶性介质、裂隙性介质),水力性质(潜水、承压水),边界条件,含水层的不均匀性,地下水动态观测时间系列的长短,开布井方式等,选择相应公式计算水文地质参数和地下水水量。

储量的意思是什么三年级

油田好比是地下“油库”,气田好比是地下“气库”,油气田就好比是地下“油气库”了。油库的大小以装油多少来衡量,气库的大小以装气多少来衡量,油田的大小,是以含油的多少即储量来衡量的。世界上的油田形形、多种多样,只有“相似”而没有“相同”的,储量也相差悬殊。例如,世界排名第一的头号油田——沙特阿拉伯的加瓦尔油田,其可储量高达114×108吨;世界排名第二的科威特的布尔干油田,可储量也有105×108吨。不过,这种可储量超过百亿吨的超级大油田,到目前为止,全世界只发现两个。原始地质储量超过20×108吨(相当可储量6.8×108吨)的大型油田,世界上现有42个,我国大庆油田名列其中。而可储量在0.06~1.3百万吨级的中小型油田,在世界油田中占绝大多数。

油气储量是油气田勘探最重要的成果,是油气田开发的物质基础,也是国家制定能源政策和国家投资的重要依据。地下没有“油海”、“油河”,油气是储存于岩石的孔隙、洞隙和缝隙之中的。由于储存条件复杂,使储存于地下的油气不能如愿以偿全部到地面。因此,把油气储量分为两类:一类叫做地质储量,即地下油气田储集层中油气的实际储量;另一类叫可储量,即在现有的经济、技术条件下,可以到地面的油气储量。通常把可储量与地质储量的比值称为收率。当然,收率越高越好。

在油气田勘探的各个阶段,都要进行储量计算。计算的方法有好几种,通常用的是容积法。大家知道,油气储存在地下岩石的孔、洞、缝隙之中,所以容积法计算油气储量的实质是计算岩石孔隙中油气所占的体积,并把地下油气的体积换算成地面的重量(石油)或体积(天然气),这就是油气的储量。石油地质储量的计算公式为:

公式中的含油饱和度是指岩石孔隙中石油所占体积与孔隙体积相比的百分数。原油在地下油层中,因地层压力较大,溶有大量气体,体积增大;到地面后,压力降低,气体从油中跑出,原油体积缩小。原油在地下的体积与地面体积之比,称为体积系数。

计算气田中天然气地质储量,与计算油田中石油地质储量的原理相同,方法相似。容积法计算气田天然气储量的公式为:

公式中,天然气体积系数是一个与天然气组成成分、地下及地面的温度和压力有关的系数。

储量计算完以后,还要对探明储量进行综合评价。评价的目的是检查储量计算的可靠性。如果把储量计算比喻为一份考卷,那么对储量的综合评价就相当于答卷者在交卷之前的自我检查,仔细查看卷面上有无错、漏、公式使用不当、计算失误等等。经检查后,如证明使用的参数齐全、准确、计算无误,所定储量的级别和勘探阶段及研究程度相符,就可以上交了。

油气地质储量计算的方法是什么?

题主是否想询问“储量的意思是什么?”储备的、储藏的数量。储量的意思理解是指自然或能源储备量的大小,例如石油、天然气、煤炭、铁矿石等,储量在地质学中是指矿藏、油藏、气藏等自然在地质条件下能够被开的量和可供开的预测量。

油气地质储量通常用容积法计算。所谓容积法,就是将含油(或含气)面积乘以油层的平均有效厚度,再乘以储油层岩石的平均有效孔隙度,就得到储存油或气的孔隙体积。但整个孔隙空间并非为油气所独占,还必须将水占据的孔隙体积剔除,这就得再乘上含油饱和度(或减去含水饱和度的参数),这样,油(或气)真正占据的孔隙体积则被求出。我们计算油气量是要知道在地面条件下(标准压力、标准温度条件)的量,不是只了解油气在油气藏压力、温度条件下的体积,所以,还必须乘上油气的密度并除以油或气的体积系数,这样,才可以实实在在提交出地面条件下油气的地质储量。根据容积法的原理,当有了精细的地质模型以后,计算机就会很快将储量计算出来。

油气地质储量的计算公式如下:

(1)石油地质储量的计算(按地面条件下重量计算)。

公制单位计算公式:

式中,N为石油地质储量,万吨;A为含油面积,平方千米;h为平均有效厚度,米;Φ为平均有效孔隙度,小数;SWi为油层原始平均含水饱和度,小数;ρo为地面脱气原油密度,吨/立方米;Boi为原始原油平均体积系数,立方米/立方米。

地层原油中的原始溶解气地质储量计算公式如下:

式中,GS为溶解气的地质储量,亿立方米;Rsi为原始溶解气油比,立方米/吨。

(2)天然气地质储量的计算(按地面条件下容积计算)。

公制单位计算公式:

式中,G为天然气地质储量,亿立方米;A为含气面积,平方千米;h为平均有效厚度,米;Φ为平均有效孔隙度,小数;Swi为平均气层原始含水饱和度,小数;T为气层绝对温度,开尔文;TSC为地面标准绝对温度,开尔文;PSC为地面标准压力,兆帕;Pi为气田的原始地层压力,兆帕;Zi为原始气体偏差系数,无因次量。