天然气动态分析方法有哪些应用范围是正确的_油气田动态分析
1.天然气学术论文
2.什么是致密砂岩气?
3.矿场油气集输是什么?
4.M-312气相色谱仪
5. 油气成藏动力学研究系统
6.石油天然气关键参数研究与获取
针对前述著书的目的和研究内容,拟采用的技术路线或研究流程为:盆地分析→含油气系统研究→建立天然气资源评价专家系统(集中在建立评价模型)→勘探层资源评价及圈闭资源评价一勘探决策分析。其中包含的技术思路有:①将资源评价与盆地分析全面而紧密结合起来,在评价模型中充分吸收盆地模拟和盆地沉积体系分析、储层研究、构造分析成果,使评价更加符合工区实际地质情况,提高评价结果可靠性;②研究中贯穿系统论观点、阶段论和转化论观点、相互联系的观点及相对的观点,把盆地、含油气系统及(油)气藏分别看作一个系统,分析其整体演化的阶段性及内部主要要素形成、发展与转化、消亡过程,分析内部要素和地质作用间的相互关系,特别是相互影响、相互配置和系统与环境关系;③加强质量控制,在分析与评价中,不但要进行点上分析,更要致力于总结面上分布规律,注意对象间的相互差异。同时在参数取值中,分析资料可靠性,并对取值(包括信度值)作相应调整,以确保评价与决策的可信度。
具体研究中所拟采取的技术方法有:
1.在盆地模拟方面,应用压实模型,通过多重回剥和剥蚀量恢复,反演沉降史;应用镜质体反射率反演古热流,再现热史;应用TTI法模拟有机质热演化成熟史,并根据前人实验和研究成果建立生烃史。
2.在层序地层格架和沉积体系研究方面:首先划分地震层序,研究盆地充填序列,然后综合利川地质、测井和地震信息,结合古地理、水动力条件、地层岩石学特征、岩石组合特征及沉积构造特征研究,开展深刻的沉积体系研究。
3.储层特征及次生孔隙的形成、分布研究中,除应用传统的研究方法外,还以储层有机地化现代理论为指导,对进油气孔隙和非进油气孔隙的演化过程进行深入探讨,研究水介质性质对砂岩储层次生孔隙的形成作用及其意义。
4.在盆地构造分析方面,在盆地演化分析基础上,从地震剖面和构造图、地层等厚图和沉积相图研究入手,分析半地堑形成机制、断陷及传递带的儿何学特征,并着重分析反转构造和断裂几何学特征与分类、运动学发展规律、成因机制、展布规律及与油气关系。
5.在含油气系统研究中,首先分析源岩储层、盖层和圈闭的形成演化过程,然后分析油气生、运、聚、散作用,总体论述系统的动态发展及与环境关系。
6.在成藏模式总结中,以新的天然气地质理论为指导,开展典型气藏解剖,然后结合盆地分析,含油气系统分析结果建立气藏形成与演化模式,探讨主要控制因素。
7.天然气资源评价专家系统建立主要是直接应用现成软件,依据成藏模式和盆地分析结果,重新建立评价模型,在专家系统中重新建立知识库。
8.评价中着重抓资料整理、参数取值这一环节,以确保评价质量。评价分断陷(或勘探层)和圈闭两个层次进行,其中含气性评价用专家系统,定量计算分别用勘探层法(FASPUM)和容积法。为贯彻经济分析这一思路,评价的资源量为可采资源量。
9.勘探决策分析用现成软件,风险和资源量直接用资源评价成果,同时开展勘探成本及市场价格分析,以钻探为中心问题,进行决策分析,按经济效益期望值排序,提出部署方案。
天然气学术论文
请问标准气体是什么?
标准气体是指由两种以上的气体组成的一种性质稳定的标准气体
常用的标准气体组份有那些?
分析标准气体的方法很多,但常用的主要有:气相色谱法、化学发光法、非色散红外法以及用于微量水和微量氧分析的其他方法。
一、化学发光法
化学发光法是利用某些化学反应所产生的发光现象对组分进行分析的方法,具有灵敏度高,选择性好,使用简单方法、快速等特点。因此,适用硫化物、氮氧化物、氨等标准气体的分析。
、气相色谱法:气相色谱法适用于氮气、氢气、氧气、氩气、氦气、一氧化碳、二氧化碳等无机气体,甲烷、乙烷、丙烯及C3以上的绝大部分有机气体的分析。通过直接法、浓缩法、反应法等样品处理技术的应用,分析的含量范围为10-9~99。999%。所以,气相色谱法也是分析标准气体中应用最多、最普遍的方法。
二、气相色谱仪主要由气路系统、进样系统、柱恒温箱、色谱柱、检测器和数据处理系统等组成。 用气相色谱法分析标准气体,要想获得准确可靠的分析结果,首先必须建立分析方法,选择合适的操作条件和操作技术。建立分析方法可从以下几方面考虑。
三、非色散红外分析法
非色散红外气体分析器是利用不同的气室和检测器测量混合气体中的一氧化碳、二氧化碳、二氧化硫、氨、丙烷、甲烷、乙烷、丁烷、乙炔等组分的含量。
非色散红外气体分析器主要由红外光源、试样室、滤波器、斩波器、检测器、放大器及数据显示装置组成。
检测器是仪器的交键部件,红外检测器分成热检测器和光子检测器两种类型。热检测器是一种能量转换器,可以把热能转换成电信号,电信号经放大后,输入数据装置。光子检测器接受红外辐射,将半导体中的电子从非导电能级激发到导电能级,在这一过程中半导体的电阻有所降低。所以半导体检测器比热检测器响应快。
其它分析方法:
1、微量氧分析仪在高纯气体的分析中,几乎所有的高纯气体中都要求准确测定其中微量氧的含量。由于大气中含有大量的(21%)氧,准确测定高纯气体中微量氧乃至痕量氧,是气体分析中的难点之一。
2、微量水分析仪
微量水分也是评价高纯气体质量的主要指标之一。几乎所有的高纯气体都对水分有严格的要求,准确测量和严格控制高纯气体中水分含量,才能保证高纯气体的质量。
可参考来源资料 kdgc/...s.aspx
什么是标准气体?什么是特种气体?
气体工业名词术语(标准气体、高纯气体、特种气体)
1. 特种气体 (Specialty gases) :指那些在特定领域中应用的, 对气体有特殊要求的纯气、高纯气或由高纯单质气体配制的二元或多元混合气。特种气体门类繁多, 通常可区分为电子气体、标准气、环保气、医用气、焊接气、杀菌气等, 广泛用于电子、电力、石油化工、采矿、钢铁、有色金属冶炼、热力工程、生化、环境监测、医学研究及诊断、食品保鲜等领域。
2. 标准气体 (Standard gases) :标准气体属于标准物质。标准物质是高度均匀的、良好稳定和量值)准确的测定标准, 它们具有复现、保存和传递量值的基本作用, 在物理、化学、生物与工程测量领域中用于校准测量仪器和测量过程, 评价测量方法的准确度和检测实验室的检测能力, 确定材料或产品的特性量值, 进行量 值仲裁等。大型乙烯厂、合成氨厂及其它石化企业, 在装置开车、停车和正常生产过程中需要几十种纯气和几百种多组分标准混合气, 用来校准、定标生产过程中使用的在线分析仪器和分析原料及产品质量的仪器。标准气还可用于环境监测, 有毒的有机物测量, 汽车排放气测试, 天然气BTU 测量, 液化石油气校正标准, 超临界流体工艺等。标准气视气体组分数区分为二元、三元和多元标准气体; 配气准度要求以配气允差和分析允差来表征;比较通用的有SE2M I 配气允差标准, 但各公司均有企业标准。组分的最低浓度为10- 6级, 组分数可多达20余种。配制方法可采用重量法, 然后用色谱分析校核, 也可按标准传递程序进行传递。
3、电子气体 (Elect ron ic gases) :半导体工业用的气体统称电子气体。按其门类可分为纯气、高纯4 _6 m+ p- _4气和半导体特殊材料气体三大类。特殊材料气体主要用于外延、掺杂和蚀刻工艺;高纯气体主要用作稀释气和运载气。电子气体是特种气体的一个重要分支。电子气体按纯度等级和使用场合,可分为电子级、L S I (大规模集成电路) 级、VL S I (超大规模集成电路) 级和UL S I (特大规模集成电路)级。
4. 外延气体 (Cp itax ial gases) :在仔细选择的衬底上采用化学气相淀积(CVD) 的方法生长一层或多层材料所用气体称为外延气体。硅外延气体有4 种, 即硅烷、二氯二氢硅、三氯氢硅和四氯化硅, 主要用于外延硅淀积, 多晶硅淀积, 淀积氧化硅膜, 淀积氮化硅膜, 太阳电池和其他光感受器的非晶硅膜淀积。外延生长是一种单晶材料淀积并生长在衬底表面上的过程。此外延层的电阻率往往与衬底不同。
5. 蚀刻气体 (Etch ing gases) :蚀刻就是把基片上无光刻胶掩蔽的加工表面如氧化硅膜、金属膜等蚀刻掉, 而使有光刻胶掩蔽的区域保存下来, 这样便在基片表面得到所需要的成像图形。蚀刻的基本要求是, 图形边缘整齐, 线条清晰, 图形变换差小, 且对光刻胶膜及其掩蔽保护的表面无损伤和钻蚀。蚀刻方式有溼法化学蚀刻和干法化学蚀刻。干法蚀刻所用气体称蚀刻气体, 通常多为氟化物气体, 例如四氟化碳、三氟化氮、六氟乙烷、全氟丙烷、三氟甲烷等。干法蚀刻由于蚀刻方向性强、工艺控制精确、方便、无脱胶现象、无基片损伤和沾污, 所以
其应用范围日益广泛。
1. 特种气体 (Specialty gases) :指那些在特定领域中应用的, 对气体有特殊要求的纯气、高纯气或由高纯单质气体配制的二元或多元混合气。特种气体门类繁多, 通常可区分为电子气体、标准气、环保气、医用气、焊接气、杀菌气等, 广泛用于电子、......>>
标准气和纯气有什么区别?
标准气体是可以还有其它杂质的气体,只不过是符合规范的。纯气就是单纯的一种气体,没有那么多的杂质。
常见有毒有害气体有哪些?
所谓有毒或有害气体,指的是被人体吸入后使人体正常的生理功能出现紊乱,即中毒现象的气体。常见有毒有害气体按其毒害性质和程度的不同,可分为两大类:
第一类, *** 性气体
是指对眼和呼吸道粘膜有 *** 作用的气体,它是化学工业常遇到的有毒气体。 *** 性气体的种类甚多,最常见的有氯、氨、氮氧化物、光气、氟化氢、二氧化硫、三氧化硫和硫酸二甲酯等。此类气体一般虽不能直接导致人中毒死亡,但也会逐渐性的影响人的健康,甚至会在当时就导致人体的不适感。长时间吸入,也会导致死亡(如光气)。
第二类,窒息性气体
是指能造成机体缺氧的有毒气体,可分为单纯窒息性气体、血液窒息性气体和细胞窒息性气体。如氮气、甲烷、乙烷、乙烯、一氧化碳、硝基苯的蒸气、氰化氢、硫化氢等。此类气体对人体的危害较大,能在短时间内使人缺氧窒息、导致死亡,危害较大。
那么常见的有害气体有哪些呢,从哪里产生的,具体有什么危害呢?耐戈友反光服我将一一为您解答:
第一, *** 性气体类,主要包括二氧化硫、氮氧化物、光气等。
1、二氧化硫,主要来自含硫矿物燃料(煤和石油)的燃烧产物,在金属矿物的焙烧、毛和丝的漂白、化学纸浆和制酸等生产过程亦有含二氧化硫的废气排出。二氧化硫是无色、有硫酸味的强 *** 性气体,易溶于水,与水蒸汽接触生成流酸,对眼睛、呼吸道有强烈的 *** 和腐蚀作用, 可引起喉咙和支气管发炎,呼吸麻痹,严重时引起肺水肿。它是一种活性毒物,在空气中可以氧化成三氧化硫,形成硫酸烟雾,其毒性要比二氧化硫大10倍。二氧化硫对呼吸器官有强烈的腐蚀作用,使鼻、咽喉和支气管发炎。当空气中SO2浓度达0.0005%时,嗅觉器官就能闻到 *** 味;达0.002%时,有强烈的 *** ,可引起头痛和喉痛;达0.05%时,可引起支气管炎和肺水肿,短时间内即可造成死亡。我国二氧化硫安全卫生标准为15mg/m3。
2、氨氧化物,主要来源于燃料的燃烧及化工、电镀等生产过程。NO2是棕红色气体,对呼吸器官有强烈 *** ,能引起急性哮喘病,实验证明,NO2会迅速破坏肺细胞,可能是肺气肿和肺瘤的病因之一。NO2浓度在1~3ppm时,可闻到臭味;浓度为13ppm时,眼鼻有急性 *** 感;浓度在16.9ppm条件下,呼吸10min,会使肺活量减少,肺部气流阻力提高。
3、职业性急性光气,光气中毒是在生产环境中吸入光气引起的以急性呼吸系统损害为主的全身性疾病。光气生产中,氯代烃高温燃烧中,光气进行有机合成,制造染料、农药、医药等生产中均可接触到光气。生产环境光气浓度在20~30mg/立方米时,可发生急性中毒,100~300mg/立方米,接触10~15min可致严重中毒或死亡。临床主要引起呼吸道粘膜 *** 症状,重者引起支气管痉挛,化学性炎症、肺水肿、窒息等。急性中毒治愈后,一般无后遗症,重度病例可留有明显的呼吸系统症状或体征。
*** 性气体具体的危害: 这些气体多具有腐蚀性,经呼吸道进入人体可造成急性中毒。 *** 性气体对机体的毒作用的共同特点,是对眼、呼吸道粘膜及皮肤都具有不同程度的 *** 性。一般以局部损害为主,但也可引起全身反应。“三酸”蒸气既可 *** 呼吸道粘膜,也可引起皮肤烧伤;长期接触低浓度酸雾,还可 *** 牙齿,引起牙齿酸蚀症。氯、氨、二氧化硫、三氧化硫等水溶性大,遇到溼润部位即易引起损害作用。如吸入这些气体后,在上呼吸道粘膜溶解,直接 *** 粘膜,引起上呼吸道粘膜充血、水肿、和分泌增加,产生化学性炎症反应,出现流涕、喉痒、呛咳等症状。氮氧化物、光气等水溶性小,它们通过上呼吸道粘膜时,很少引起水解作用,故粘膜 *** 作用轻微;但可继续深入支气管和肺泡,逐渐与粘膜上的......>>
哪些气体对人体有害呢?
1.甲醛:世界上公认的致癌物质甲醛会 *** 人的眼睛和呼吸系统,如果长时间生活在甲醛超标的环境中吸入过量的甲醛会造成免疫功能异常肝、肺操作及影响神经中枢系统正常工作,而且还能致使胎儿畸形,甚至死亡。(国家标准规定室内每立方米不能超过0.08mg/ m3)
2.苯:苯主要来源于各种粘合剂、油漆、涂料等装饰材料,人在短时间内吸入高浓度的苯会使中枢系统麻痹,出现头晕、恶心、乏力等症状,严重者出现昏迷以致呼吸系统衰竭而死亡。另外苯也可能会引发白血病。卫生部2001年制定的《室内空气质量卫生规范》规定室内空气中苯含量标准是不高于0.087mg/ m3
3.氨:氨是一种无色具有强烈 *** 性气味的气体,由于极易溶于水常吸附在人体皮肤上和眼结膜上,从而产生 *** 性炎症,吸入大量的氨气会出现咽痛、胸闷、并伴有头疼、恶心、流泪等症状。卫生部2001年制定的《民用建筑工程室内环境污染控制规范》室内空气中氨的含量标准不能高于0。2 mg/ m3
4.氡:氡是一种无色、无味、强致癌放射性物质,主要来源于建筑材料。如果在含氡气的居室内呆上一天,相当于抽了100多盒的烟。氡对人体的主要危害是损害肺器官导致癌症,是除香菸外的第二大制肺癌物质。(国定标准规定氡的含量亲房标准不能高于100QB/ m3,旧房标准不能高于200QB/m3
还有垃圾燃烧的气体
魂斗罗怎么调30个脑袋
1代 上上下下左右左右 BABA
2代 右左下上 AB
什么是致密砂岩气?
天然气作为一种优质、高效的清洁能源,在多个领域已获得广泛的应用,并且发展前景广阔。下面是我精心推荐的天然气学术论文,希望你能有所感触!
天然气学术论文篇一天然气净化综述
[摘 要]介绍脱碳、脱汞、脱水工艺方法。
[关键词]天然气;净化;工艺。
中图分类号:TE645 文献标识码:A 文章编号:1009-914X(2014)18-0107-01
1 引言
天然气进入液化前,需要脱除其中的酸性气体CO2。酸性气体CO2将导致设备腐蚀,还将在液化的低温部分形成固态的干冰,堵塞设备和管道,使生产无法进行,故设置酸性气体脱除单元脱除原料气中的CO2,使其达到液化的天然气质量要求。原料气还需要进行脱水脱汞处理,使水含量小于1ppm,汞含量小于0.01?g/m3。目的是可防止天然气中的水分析出,在液化时结冰,使管道和仪表阀门出现冰堵,发生事故;因液态水的存在,未脱除的酸性组份会对压力管道和容器造成腐蚀。若汞含量超标将会严重腐蚀铝制设备,降低设备使用寿命,且将造成环境污染以及检修过程中对人员的危害。
2 脱碳工艺方法介绍
a)脱碳工艺方法
脱碳工艺方法分为干法脱碳和湿法脱碳两大类。
1)干法脱碳
主要有固体吸附和膜分离法。固体吸附CO2与分子筛脱水类似,天然气中的CO2被吸附在多孔状固体上(如分子筛),然后通过加热使CO2脱除出来。该方法工艺流程较简单,而且可以与脱水分子筛布置在同一个塔中,从而达到减少单元数量、简化流程的目的。但受固体吸附剂吸附容量较小的限制,比较适合含硫,特别是有机硫的原料。
膜分离是将天然气通过某种高分子聚合物薄膜,在高压条件下,薄膜对天然气中不同组份的溶解扩散性的差异,形成了不同组份渗透通过膜的速率不同,从而选择性将CO2与其它组份进行分离。该方法投资较高,更适合CO2浓度较高的天然气脱碳工艺。
2)湿法脱碳
分为物理吸收法和化学吸收法。物理吸收法是基于有机溶剂如碳酸丙烯脂、聚乙二醇二甲醚和甲醇等作为吸收剂,利用CO2在这些溶剂中的溶解度随着压力变化的原理来吸收CO2。其特点是在高压及低温的条件下吸收,吸收容量大,吸收剂用量少,且吸收效率随着压力的增加或温度的降低而增加。而在吸收饱和后,采用降压或常温汽提的方式将CO2分离使吸收剂再生。
化学吸收法是以可逆的化学反应为基础,以碱性溶剂为吸收剂的脱碳方法。溶剂与原料气中的CO2反应生成某种化合物,然后在升高温度、降低压力的条件下,该化合物又能分解并释放CO2,解析再生后的溶液循环使用。化学吸收主要有碳酸钾吸收法、醇胺吸收法和氢氧化钠吸收法等。
b)工艺路线比选
目前在天然气脱碳工业上主要运用以下工艺。
1)膜分离工艺
膜分离的基本原理就是利用各气体组份在高分子聚合物中的溶解扩散速率不同,因而在膜两侧分压差的作用下导致其渗透通过纤维膜壁的速率不同将不同气体分离。推动力(膜两侧相应组份的分压差)、膜面积及膜的分离选择性,构成了膜分离的三要素。依照气体渗透通过膜的速率快慢,可把气体分成渗透系数较大的?快气?和渗透系数相对较小的?慢气?。常见气体中,H2O、H2、He、H2S、CO2等称为?快气?;而称为?慢气?的则有CH4及其它烃类、N2、CO、Ar等。膜分离器内配置数万根细小的中空纤维丝,中空纤维丝的优点就是能够在最小的体积中提供最大的分离面积,使得分离系统紧凑高效,同时可以在很薄的纤维壁支撑下,承受较大的压力差。天然气进入膜分离器壳程后,沿纤维外侧流动,维持纤维内外两侧一适当的压力差,则气体在分压差的驱动下?快气?(H2O、CO2)选择性地优先透过纤维膜壁在管内低压侧富集导出膜分离系统,渗透速率较慢的气体(烃类)则被滞留在非渗透气侧,以几乎跟原料气相同的压力送出界区。
2)活化MDEA(甲基二乙醇胺)工艺
活化MDEA工艺于20世纪60年代开发,第一套活化MDEA工业装置于1971年在德国巴斯夫的一座工厂中被投入生产应用。活化MDEA法采用45~50%的MDEA水溶液,并添加适量的活化剂以提高CO2的吸收速率。MDEA不易降解,具有较强的抗化学和热降解能力、腐蚀性小、蒸汽压低、溶液循环率低,并且烃溶解能力小,是目前应用最广泛的气体净化处理溶剂。该工艺应用范围广泛,可以用来从合成氨厂的合成气中去除CO2,也可净化合成气、天然气,及高炉气等专用气体。目前活化MDEA工艺已成功运用于全世界超过250个气体净化工厂中,其中包括80个天然气处理厂。且该工艺可应用到现有工厂的技术改造上,近年来,国外的大型化肥装置已有采用活化MDEA水溶液改造热钾碱脱CO2的趋势。
3)Selexol工艺
Selexol工艺是美国Allied化学公司(现归属Norton公司)在20世纪60年代研发成功。该工艺所使用的吸收剂(聚乙二醇二甲醚混合物)具有极低的蒸汽压、无腐蚀性耐热降解和化学降解等特点,适用于合成气和天然气的净化处理。目前全球采用Selexol工艺装置的数量超过55套,但Selexol工艺存在很多问题,如聚乙二醇二甲醚混合物的溶液粘度较大,增加了传质阻力,不利于吸收过程,同时聚乙二醇二甲醚混合物溶解和夹带天然气中的少量烃类物质等。
4)冷甲醇工艺
冷甲醇工艺是由德国Linde AG公司和Lurgi公司于20世纪50年代联合开发的气体净化工艺。该工艺采用甲醇作为溶剂,依据甲醇溶剂对不同气体溶解度的显著差别来脱除H2S、CO2和有机硫等杂质。由于所使用的甲醇因蒸气压较高,需在低温下(-55℃~-35℃)操作。该工艺目前多用于渣油或煤部分氧化制合成气的脱硫和脱碳,而在其它项目单独用于脱除CO2的工业应用实例很少。
5)低温分离工艺
低温分离工艺是利用原料气中各组份相对挥发度的差异,通过冷冻制冷,在低温下将气体中组份按工艺要求冷凝下来,然后用蒸馏法将其中各类物质依照沸点的不同逐一加以分离。该方法应用较多的工艺主要是美国的Rayn-Holmes工艺,目前全世界工业装置超过8套。该方法适用于天然气中CO2含量较高,以及在CO2含量和流量出现较大波动的情形。但工艺设备投资费用较大,能耗较高。
3 脱水脱汞工艺介绍
a)概述
天然气的脱水方法主要有三种:冷却法、甘醇吸收法及固体(如硅胶、活性氧化铝、分子筛等)吸附法。
1)冷却脱水时利用当压力不变时,天然气的含水量随温度降低而减少的原理实现天然气脱水。此法只适用于大量水分的粗分离。若冷却脱水过程达不到作为液化厂原料气中对水露点的要求,则还应采用其它方法对天然气进行进一步的脱水。
2)吸收脱水是用吸湿性液体(或活性固体)吸收的方法脱除天然气中的水蒸气。用作脱水吸收剂的物质应具有以下特点:对天然气有很强的脱水能力,热稳定性好,脱水时不发生化学反应,容易再生,粘度小,对天然气和液烃的溶解度较低,起泡和乳化倾向小,对设备无腐蚀性,同时价格低廉,容易得到。实践证明二甘醇及其相邻的同系物三甘醇是常用的醇类脱水吸收剂。(1)甘醇胺溶液:优点:可同时脱除水、CO2和H2S,甘醇能降低醇胺溶液起泡倾向。缺点:携带损失量较三甘醇大,需要较高的再生温度,易产生严重腐蚀,露点小于甘醇脱水装置,仅限于酸性天然气脱水。(2)二甘醇水溶液:优点:浓溶液不会凝固,天然气中有硫、氧和CO2存在时,在一般操作温度下溶液性能稳定,高的吸湿性。缺点:携带损失比三甘醇大,露点降小于三甘醇溶液,投资高。(3)三甘醇水溶液:优点:浓溶液不会凝固,容易再生,携带损失量小,露点降大。缺点:投资高,当有轻质烃液体存在时会有一定程度的起泡倾向,运行可靠。
甘醇法适用于大型天然气液化装置中脱除原料气所含的大部分水分。
4 结语
通过以上对天然气净化工艺的综合介绍及对比,旨在为今后液化天然气装置技术选用提供借鉴和设计参考。
参考文献
[1] 徐文渊、蒋长安等,天然气利用手册,中国石化出版社,2001.
[2] 顾安忠,液化天然气技术,机械工业出版社,2003.
点击下页还有更多>>>天然气学术论文
矿场油气集输是什么?
一、致密砂岩气的概念及特征
(一)致密砂岩气的概念
致密砂岩气是一种储集于低渗透—特低渗透致密砂岩储层中的典型的非常规天然气资源,依靠常规技术难以开采,需通过大规模压裂或特殊采气工艺技术才能产出具有经济价值的天然气(李建中等,2012;邹才能等,2011)。
(二)储层特征
致密砂岩储层具有分布面积较广、埋藏深度较大、成岩演化作用复杂、储层物性差、非均质性强及不完全受制于达西定律等特点,最主要的是单井产能一般较低,通常局部地区发育有“甜点”,利用常规技术难以进行开发。与常规砂岩储层相比,致密砂岩气储层具有以下基本特征:
(1)孔隙度与渗透率均较小,喉道小且改造频繁,连通性差。一般来说,致密砂岩的孔隙度小于10%,渗透率小于0.1mD。
(2)成岩后生作用强烈,次生孔隙占重要地位。致密砂岩通常具有沉积速度相对较慢、成岩过程长的特点。由于成岩历史长且成岩序列复杂,往往压实强烈,后生作用明显,原始粒间孔隙减少较多。据统计,其次生孔隙约占总孔隙的30%~50%。
(3)束缚水饱和度较高且变化较大。根据鄂尔多斯盆地上古生界致密砂岩储层束缚水饱和度的分析,束缚水饱和度都在40%以上,而Spencer认为致密砂岩储层的束缚水饱和度为45%~70%。
(4)砂体不发育,一般呈透镜状(主要是指“甜点”)。据统计,透镜体产层的天然气占致密砂岩气总储量的43%,这或许是由于透镜状砂体比薄互层状砂体压实率低及溶蚀作用强。
(5)非均质程度高,岩性多样且粒度偏细,自生黏土矿物含量较大,砂泥交互,酸敏明显,驱油效果差,通常伴有裂缝(尤其是微裂缝),层控作用明显。
(6)地层压力异常,变化不一,但毛管压力一般较高。在润湿相饱和度达50%的情况下,通过压汞法和高速离心法测得毛管压力一般大于6.9MPa,气水分布较为复杂(异常高压和异常低压均有可能)(于兴河等,2015)。
二、致密砂岩气的成藏机制
(一)储层成因类型
致密砂岩储层与常规砂岩储层相比具有特殊的特征。Soeder和Randolph(1987)将致密砂岩储层划分出3种类型,即由自生黏土矿物沉淀造成的岩石孔隙堵塞的致密砂岩储层、由于自生胶结物的堵塞而改变原生孔隙的致密砂岩储层和由于沉积时杂基充填原生孔隙的泥质砂岩储层。Shanley等(2004)认为了解常规储层和致密储层之间的岩石学特征对于理解致密储层和预测致密储层是非常关键的;而且指出,致密砂岩储层并不总是由砂岩成分的不成熟、泥质杂基含量高所造成的,在成分成熟度较高的砂岩中一样存在着致密储层。因此,按照砂岩储层的致密成因,可以将致密砂岩储层划分为4种类型(张哨楠,2008)。
1.由自生黏土矿物的大量沉淀所形成的致密砂岩储层
此类致密储层可以是结构成熟度和成分成熟度均比较高的砂岩,也可以是结构成熟度较高而成分成熟度不高的砂岩。岩石类型为石英砂岩,硅质岩碎屑含量比较高,岩石的分选性好,颗粒之间没有任何黏土杂基存在;但是在埋藏过程中由于自生的伊利石堵塞了颗粒间的喉道,喉道间的连通主要依靠伊利石矿物间的微孔隙,这使得岩石的渗透率极低,然而孔隙度的降低与渗透率相比不太明显,主要形成中孔、低渗的致密储层。
2.胶结物的晶出改变原生孔隙形成的致密砂岩储层
在砂岩储层埋藏过程中,由于石英和方解石以胶结物的形式存在于碎屑颗粒之间,极大地降低了储层的孔隙度,储层的渗透率也随之降低,形成低孔、低渗的致密储层。在孔隙中可以保存形成时间比较早的次生孔隙。岩石类型为岩屑石英砂岩,岩石的分选较好,含有少量的长石,孔隙类型主要有长石早期溶蚀形成的粒内溶孔以及高岭石沉淀形成的晶间微孔隙。
3.高含量塑性碎屑因压实作用形成的致密砂岩储层
对于距离物源比较近、沉积环境水体能量不高、沉积物成分比较复杂尤其是塑性和不稳定碎屑含量较高的储层,在埋藏过程中,在没有异常压力形成的条件下,因压实作用使塑性碎屑变形从而呈假杂基状充填于碎屑颗粒之间,导致砂岩储层成为致密储层。
4.粒间孔隙被碎屑沉积时的泥质充填形成的致密砂岩储层
在低能条件下或者在浊流条件下,由于沉积水体浑浊或者因水体能量不高,碎屑颗粒间杂基含量比较高,成为泥质砂岩。由于粒间孔隙被杂基所占据,孔隙间的流体交换不顺畅,无论早期还是晚期的溶蚀性流体都很难进入到孔隙中,因此粒间孔隙或者粒内孔隙都不发育;在泥质杂基中,可能发生重结晶或者微弱的溶蚀,形成杂基内的溶蚀微孔隙。
(二)成藏机制
姜振学等根据储层致密化与天然气充注的先后关系将致密砂岩气藏分为2种类型——储层先期致密型(“先成型”)和储层后期致密型(“后成型”)。“先成型”致密砂岩气藏的储层致密化过程发生在烃源岩生排烃高峰期天然气充注之前,并要求孔隙度小于12%,渗透率小于1mD。而“后成型”致密砂岩气藏则以储层后致密为特征。
三、致密砂岩气的开发利用
(一)致密砂岩气的开采
1.多级压裂水平井技术
多级压裂水平井技术结合了水平井技术和多级压裂技术的优点,有效改善了近井地带渗流条件,大幅提高了单井控制储量,已成为有效开发致密砂岩油气藏的重要技术手段。通过利用参数对比法、试井曲线形态判别法、裂缝参数分析法等方法,对多级压裂水平井的有关参数进行评价及方案优选。
2.超前注水技术
致密砂岩油气藏的岩性致密,渗流阻力大,而且压力的传导能力很差。所以仅仅依靠天然的能量进行开采,其采收率很低,而且地层压力很难恢复。因此要保持地层的注采平衡,可以采用超前注水的方法。
超前注水是指注水井在采油井投产前,经过一定时间的注水,使地层压力上升至高于原始地层压力,并建立起有效驱替系统,油层内驱替压力梯度大于启动压力梯度后,油井投产并保持这种状态下开采的开发方式。
采用超前注水的机理如下:超前注水可以维持地层压力,促使单井获得较高的产量,从而避免了储层渗透率的降低和启动压力梯度的升高;超前注水增大了流体在地层中的渗流速度,有利于提高油相相对渗透率;超前注水会提高油气藏的最终采收率。
3.油气藏描述技术
油藏描述总体上分为三种:以测井为主体的油藏描述阶段、多学科协同油藏描述发展阶段、多学科一体化油藏描述阶段。
对致密砂岩气藏进行精细描述,是有效开发这类气藏的基础。目前发展了以提高储层预测和气水识别精度为目标的二维、三维地震技术系列,主要包括构造描述技术、波阻抗反演储层预测技术、地震属性技术、频谱成像技术、三维可视化技术以及地震叠前反演技术。对致密砂岩气藏而言,寻找裂缝发育带,对提高致密储层天然气的储量、提高单井产量有着举足轻重的作用,它直接关系到致密砂岩气藏的经济可采性。
4.储层改造技术
在20世纪末,储层改造主要是作为增产措施和解除近井地带地层的伤害、提高近井地带油气层的渗流能力、提高单井产量的重要手段。现阶段,储层改造技术越来越受到重视。中国石油对储层改造技术给予了高度的重视,并设置了多个重大专项,这些条件为储层改造技术的进步和发展提供了坚实的后盾。常见的储层改造技术如下:
(1)加砂压裂技术:在地面用压裂泵车,使井眼内的压力增高,从而克服地层的地应力和岩石张力强度,进而促使岩石破裂,形成人工裂缝。
(2)高能气体压裂技术:通过电缆将高能燃料输送到气层井段,利用点燃气体产生的大体积的燃烧气体,瞬间产生一个破裂压力,撕开多条主裂缝和微裂缝。
(3)喷砂射孔技术:通过油管将高压喷射射孔枪送到目的层段,利用射孔枪喷射产生的高速液体,在岩石中形成一定深度的孔眼。
(4)酸化技术:在地面用高压泵车,从油管内向地层注入一定浓度的酸液,通过酸液与地层中钻井液、滤液和地层中的可酸蚀成分发生化学反应,清除孔隙中污染和扩大孔隙,减小油气流阻力,提高油气井的产量。
5.注气开发技术
注气开发技术大致上可以分为一次接触、多次接触和非混相驱三种,其基本原理是通过注气达到降低油水界面张力,进而提高油田的驱油效率和提高油田的经济效益。
采用注气开发技术开发致密砂岩油气藏,首先要选择什么气体作为注入气,现行的注气开发一般选用的是CO2、N2或烃类气体,使用最多的是CO2。CO2气体能有效降低原油黏度,降低残余油饱和度,溶解储层中胶质,提高渗透率。气驱时,气体与原油接触并溶解于原油中,原油的黏度降低、体积膨胀,同时原油和注入气体的界面张力降低,原油中溶解的气体越多,降黏的幅度越大,油气的界面张力越小,气体进入孔隙的阻力越小。
(二)开发利用状况
据统计,目前全球大约有70个盆地中发育致密砂岩气,主要集中在北美、亚太、拉丁美洲、原苏联和中东—北非等地区。全球致密砂岩气资源量约为210×1012m3,现今技术可开采的致密砂岩气储量约为(10.5~24.0)×1012m3。致密砂岩气勘探开发率先取得重大突破的国家是美国,在900个气田中致密砂岩气生产井超过40000口,占美国陆上除了阿拉斯加和夏威夷州外天然气产量的13%。美国致密砂岩气的研究发展迅速,致密砂岩气产量逐年增加,已由1990年的600×108m3增加到2008年的1757×108m3(呙诗阳等,2013)。
我国致密砂岩气资源量主要分布在陆上含煤系地层的沉积盆地中,共有致密砂岩气地质资源量(17.0~23.9)×1012m3,技术可采资源量(8.1~11.4)×1012m3,均占全国致密砂岩气资源总量的86%左右。其中,鄂尔多斯盆地石炭—二叠系致密砂岩气技术可采资源量(2.9~4.0)×1012m3,四川盆地三叠系须家河组致密砂岩气技术可采资源量(2.0~2.9)×1012m3,塔里木盆地侏罗—白垩系致密砂岩气技术可采资源量(1.5~1.8)×1012m3,三者合计技术可采资源量(6.4~8.7)×1012m3,约占全国陆上致密砂岩气资源总量的78%。按照中国海油确定的近海海域致密砂岩气评价标准(海域按孔隙度5%~15%、渗透率小于10mD划为致密砂岩气,与陆上标准不同),我国东海、莺歌海、珠江口三个近海盆地共有致密砂岩气技术可采资源量(1.1~2.0)×1012m3,约占全国致密砂岩气资源总量的14%。随着海域含油气盆地地质认识程度的提高和勘探开发技术的进步,海域将是未来致密砂岩气勘探开发的重要接替领域(戴金星等,2012)。
从致密砂岩气赋存的层系看,我国致密砂岩气资源埋深普遍偏大,中部地区的鄂尔多斯盆地上古生界、四川盆地三叠系须家河组埋深一般为2000~5200m;西部地区的准噶尔、塔里木、吐哈等盆地埋深一般为3800~7000m,塔里木盆地库车地区致密砂岩气埋深甚至可达8000m左右。东部和海上诸盆地致密砂岩气目的层以白垩系、古近系和新近系为主,埋深一般为2000~4500m。
截至2010年底,我国15个致密砂岩大气田探明天然气储量共计28656.7×108m3,占当年全国天然气总探明储量的37.3%,如再加上全国中小型致密砂岩气田储量(1452.5×108m3),我国致密砂岩气探明储量将达30109.2×108m3,占全国天然气总探明储量的39.2%。
由图3-6可见,1990-2010年20年间美国天然气年产气量基本呈增长之势,这主要是由于有致密砂岩气产量增长作支撑(美国储量排名前100的气藏中有58个是致密砂岩气藏)。中国截至2010年底共发现储量大于1000×108m3的大气田18个,其中9个为致密砂岩大气田,总探明地质储量25777.9×108m3,占18个大气田的53.5%。由此可见,中国与美国致密砂岩气储量有相似之处,即致密砂岩气在我国天然气储量中占举足轻重的地位,因此把致密砂岩气作为我国今后一段时间非常规气勘探开发之首是合理的。
图3-6 美国1990-2035年各类天然气历史产量和预测产量结构图
图中百分数为各类天然气占总产气量的比例
四、致密砂岩气的发展趋势
(一)致密砂岩气发展的关键因素
我国致密砂岩气早在20世纪60年代在四川盆地就已有发现,但受认识和技术限制,发展较为缓慢。2005-2011年,我国致密砂岩气地质储量年增3000×108m3,产量年增50×108m3,呈快速增长态势(图3-7)。至2011年年底致密砂岩气累计探明地质储量为3.3×1012m3,已占全国天然气总探明地质储量的40%;可采储量1.8×1012m3,约占全国天然气可采储量的1/3。2011年致密砂岩气产量达256×108m3,约占全国天然气总产量的1/4,成为我国天然气勘探开发中重要的领域。致密砂岩气的快速发展得益于以下因素。
图3-7 1990-2011年我国致密砂岩气地质储量、产量增长形势图
1.资源潜力很大
资源调查表明,我国致密砂岩气重点分布在鄂尔多斯和四川盆地,其次是塔里木、准噶尔和松辽盆地,约占资源总量的90%。采用类比法,初步评估我国致密砂岩气技术可采资源量为10×1012m3左右,目前累计探明率仅18%,加快勘探开发进度,仍具有很大潜力。
2.关键技术已基本过关
近年来,借鉴世界致密砂岩气开采的关键技术,包括直井、丛式井、水平井分段压裂技术,我国致密砂岩气开发技术取得长足进步。随着大型压裂改造技术的进步和规模化应用以及生产组织运行管理模式的创新,单井产量大幅提高,成本大大降低,有力地促进了鄂尔多斯盆地上古生界、四川盆地川中须家河组等一批大型致密砂岩气田的商业性开发利用。在鄂尔多斯盆地苏里格地区成功开发的经验表明,早期天然气几乎完全不能动用,单井产量极低,一般无自然产能;引入市场化机制后,在中国石油长庆油田主导下,其他油气田企业、相关技术服务企业和大量民营企业进入,大大调动了甲、乙双方的积极性,科技攻关不断取得突破。经过压裂改造,单井产量达到日产(1~2)×104m3,开发产能迅速提升。以苏里格气田为例,共投产2681口气井,平均单井日产量1×104m3,生产动态表明,单井稳产4年,平均单井累产可达到2300×104m3。2011年苏里格气田产量达到121×108m3,储量动用程度逐步提高。总体而言,有序监控下的市场化机制促使我国致密砂岩气开采效果有突破性进展。
3.全面动用致密砂岩气地质储量的能力较差
我国致密砂岩气具有大面积分布的特点,但由于当前的天然气价格未到位,我国全面动用致密砂岩气的能力还较差。以苏里格地区为例,按照直井单井产量划分,大于2×104m3/d的为Ⅰ类气,(1~2)×104m3/d的为Ⅱ类气,(0.5~1)×104m3/d的为Ⅲ类气,小于0.5×104m3/d的为表外气,前三类气的储量占到60%,Ⅳ类气的储量达到40%。目前,苏里格地区主要动用的是Ⅰ类气和Ⅱ类气的一部分,Ⅲ类气和表外气的储量基本没有动用,主要原因是在现行天然气价格体系下,开发成本偏高,产出投入比较小,经济效益很差,甚至亏损。
总体上,我国致密砂岩气资源品位差异较大,全面动用我国致密砂岩气资源的能力还较差。较好的致密砂岩气资源,如长庆油田苏里格地区Ⅰ类气,目前开发具有一定的经济效益。Ⅱ、Ⅲ类气和表外气资源开发的关键难点是资源品位差、开发成本高、核心技术需要持续攻关。
(二)与页岩气、煤层气发展情况对比
致密砂岩气和页岩气、煤层气的开发步伐相比,其开发速度遥遥领先。虽然在非常规天然气开采中,致密砂岩气占绝对优势,煤层气和页岩气只有很少一部分,但致密砂岩气和页岩气、煤层气当前的发展状况却明显不一样。在美国页岩气革命成功后,我国页岩气的地位发生了重大改变,一跃成为独立的矿种,而致密砂岩气只是作为天然气的细小分支而存在。舆论媒体、国内外油气巨头、资本市场对页岩气更是钟爱有加,资本市场概念股横空出世、国土资源部两轮页岩气招标的推出更是将页岩气的影响力推上顶峰。
从经济效益来看,致密砂岩气有着非常完整的产业链,产运销各环节都不存在障碍,涉足企业的盈利能力也比较可观;而页岩气目前还处在勘探阶段的初期,储量尚不能有效落实,仅中国石化涪陵页岩气田和中国石油长宁—威远页岩气田实现了商业开发,第二轮全国页岩气招标中标的企业均处于前期勘探阶段。从储量来看,页岩气可采地质储量达25×1012m3,其开发潜力无可比拟,有望在常规天然气枯竭后成为清洁能源的主要来源。从工程技术方面来看,致密砂岩气开采的关键技术已相当成熟,川西、鄂尔多斯深盆、松辽断陷和淮南已实现大规模商业化开采;而页岩气开发还处于起步阶段,页岩气对开采技术和设备的要求更高,且页岩气开发的地质条件可能更为复杂,现正加紧试验和技术攻关,运输环节也需要更多投入,不过日后页岩气开采技术突破,实现了大规模商业开发后,将成为天然气产量来源的主力军。美国页岩气产业的巨大成功为我国提供了诸多可借鉴的经验,国内页岩气产业链一旦突破诸多技术瓶颈也会迎来爆发期;虽然现阶段页岩气炙手可热,但是产量已经有相当规模的致密砂岩气同样需要更多的资本投入,以获取更多产能(文小龙,2015)。
(三)发展前景
目前,我国已经拥有较为成熟的致密砂岩气勘探开发方法和技术,并在鄂尔多斯、四川和塔里木等盆地取得了一系列重要成果,形成了鄂尔多斯盆地上古生界、川中须家河组和塔里木盆地库车深层三大致密砂岩气现实区和松辽盆地、渤海湾盆地、吐哈盆地和准噶尔盆地等四大致密砂岩气潜力区。根据中国致密砂岩气的资源基础和目前的勘探开发现状,预计在今后相当长时期内,我国每年将新增致密砂岩气探明地质储量在(2500~3500)×108m3之间;预计到2020年全国致密砂岩气年产量有可能达到600×108m3以上,产量将主要集中在鄂尔多斯盆地、四川盆地和塔里木盆地。
总体而言,我国致密砂岩气资源较丰富,勘探开发技术较为成熟,是非常规天然气最现实的勘探领域。随着致密砂岩气勘探理论和开发技术的进步,致密砂岩气将成为中国天然气工业发展的重要组成部分(李建忠等,2012)。
M-312气相色谱仪
一、矿场油气集输的任务及内容
矿场油气集输是指把各分散油井所生产的油气集中起来,经过必要的初加工处理,使之成为合格的原油和天然气,分别送往长距离输油管线的首站(或矿场原油库)或输气管线首站外输的全部工艺过程。
概括地说,矿场油气集输的工作范围是以油井井口为起点,矿场原油库或输油、输气管线首站为终点的矿场业务;主要任务是尽可能多的生产出符合国家质量指标要求的原油和天然气,为国家提供能源保障;具体工作内容包括油气分离、油气计量、原油脱水、天然气净化、原油稳定、轻烃回收、含油污水处理等工艺环节。
二、矿场油气集输流程
矿场油气集输流程是油气在油气田内部流向的总说明。它包括以油气井井口为起点到矿场原油库或输油、输气管线首站为终点的全部工艺过程。矿场油气集输流程可按多种方式划分。
(一)按布站级数划分
在油井的井口和集中处理站之间有不同的布站级数,据此可命名为一级布站流程、二级布站流程和三级布站流程。
一级布站流程是指油井产物经单井管线直接混输至集中处理站进行分离、计量等处理。该流程适用于离集中处理站较近的油井。
二级布站流程(见图7-2)是指油井产物先经单井管线混输至计量站,在计量站分井计量后,再分站(队)混输至集中处理站处理。该流程适用于油井相对集中、离集中处理站不太远、靠油井压力能将油井产物混输至集中处理站的油区,一般是按采油队布置计量站。
图7-2 二级布站集输流程
三级布站流程是指油井产物在计量站分井计量后,先分站(队)混输至接转站,在接转站进行气液分离,其中的液相经加压后输至集中处理站进行后续处理,气相由油井压力输至集中处理站或天然气处理厂进行处理。该流程适用于离集中处理站较远、靠油井压力不能将油井产物混输至集中处理站的油区。
总体而言,二级布站流程是较合理的布站方式,其特点是密闭程度较高,油气损耗较少,能量利用合理,便于集中管理。但在实际应用中,要根据具体情况具体分析确定布站方式。
(二)按加热降黏方式划分
我国油田生产的原油多数是“三高(高含蜡、高凝点、高黏度)”原油,一般采用加热方式输送。按加热方式的不同可分为井口加热集输流程、伴热集输流程(蒸汽伴热或热水伴热)、掺合集输流程(掺蒸汽、掺热油、掺热水、掺活性水)和井口不加热集输流程等。
1.井口加热集输流程
井口加热集输流程如图7-3所示。油井产物经井口加热炉加热后,进计量站分离计量,再经计量站加热炉加热后,混输至接转站或集中处理站。这是目前我国油田应用较普遍的一种集输流程。
图7-3 井口加热集输流程
1—井口水套加热炉;2—计量分离器;3—计量站水套加热炉;4—计量仪表
2.伴热集输流程
伴热集输流程是用热介质对集输管线进行伴热的集输流程,按所用的伴热介质不同可分为蒸汽伴热集输流程和热水伴热集输流程。
图7-4为蒸汽伴热集输流程,通过设在接转站内的蒸汽锅炉产生蒸汽,用一条蒸汽管线对井口与计量站间的混输管线进行伴热。
图7-4 蒸汽伴热集输流程
1—生产、计量分离器;2—除油分离器;3—缓冲油罐;4—外输油泵;5—外输加热炉;6—锅炉;7—水池
图7-5为热水伴热集输流程,通过设在接转站内的加热炉对循环水进行加热。去油井的热水管线单独保温,对井口装置进行伴热;回水管线与油井的出油管线一起对油管线进行伴热。
这两种流程比较简单,适用于低压、低产、原油流动性差的油区的伴热集输,但需有蒸汽产生设备或循环水加热炉,一次性投资大,运行中热损失大,热效率较低。
3.掺合集输流程
掺合集输流程是将具有降黏作用的介质掺入井口出油管线中,以达到降低油品黏度、实现安全输送的目的。常用作降黏介质的有蒸汽、热稀油、热水和活性水等。
图7-6为掺稀油集输流程。稀油经加压、加热后从井口掺入油井的出油管线中,使原油在集输过程中的黏度降低。该流程适用于地层渗透率低、产液量少、原油黏度高的油井,但设备较多,流程复杂,需要有适于掺合的稀油。
图7-5 热水伴热集输流程
1—生产、计量分离器;2—除油分离器;3—缓冲油罐;4—外输油泵;5—外输加热炉;6—缓冲水罐;7—循环水泵;8—循环水加热炉
图7-6 掺稀油集输流程
1—来油计量阀组;2—加热炉;3—三相分离器;4—脱水泵;5—沉降罐;6—脱水加热炉;7—电脱水器;8—净化油罐;9—稀油分配计量阀组;10—稀油加热炉;11—外输泵;12—流量计;13—稀油缓冲罐;14—掺油泵;15—天然气去气体净化站;16—净化原油外输;17—稀油进站;18—含油污水去污水站
图7-7为掺活性水集输流程。通过一条专用管线将热活性水从井口掺入油井的出油管线中,将原油变成水包油型的乳状液,使原来油与油、油与管壁间的摩擦变为水与水、水与管壁间的摩擦,以达到降低油品黏度的目的。该流程适用于高黏度原油的集输,但流程复杂,管线、设备易结垢,后端需要增加破乳、脱水等设施。
4.井口不加热集输流程
图7-8为井口不加热集输流程,是随着油田开采进入中、后期,油井产液中含水不断增加而采用的一种集输方法。由于油井产液中含水的增高,一方面使采出液的温度有所提高,另一方面使采出液可能形成水包油型乳状液,从而使得输送阻力大为减小,为井口不加热、油井产物在井口温度和压力下直接混输至计量站创造了条件。
图7-7 掺活性水集输流程
图7-8 井口不加热集输流程
(三)按布管形式划分
按通往井口管线的根数可分为单管集输流程、双管集输流程和三管集输流程等。此外,还有环形管网集输流程、枝状管网集输流程、放射状管网集输流程、米字形管网集输流程等。
单管集输流程是指井口与计量站之间只有一条油井产物混输管线,如图7-3所示的加热集输流程。双管集输流程是指井口与计量站之间有两条管线,一条输送油井产物,另一条输送热介质,实现降黏输送,如图7-7所示的掺活性水集输流程。三管集输流程是指井口与计量站之间有三条管线,一条输送油井产物,另外两条实现热介质在计量站与井口之间的循环,如图7-5所示的热水伴热集输流程。
环形管网集输流程如图7-9所示,是用一条通往接转站或集中处理站的环形管道将油区各油井串联起来,实现二级或一级布站。该流程多用于油田外围油区的集输。
(四)按油气集输系统密闭程度划分
按油气集输系统密闭程度可划分开式集输流程和密闭集输流程。
开式集输流程是指油井产物从井口到外输之间的所有工艺环节当中,至少有一处是与大气相通的,如图7-10中的6、9、13等储油罐处。这种流程运行管理的自动化水平要求不高,参数容易调节,但油气的蒸发损耗大,能耗大。
密闭集输流程是指油井产物从井口到外输之间的所有工艺环节都是密闭的,如图7-11所示。这种流程减少了油气的蒸发损耗,降低了能耗,但由于整个系统是密闭的,若局部出现参数波动,会影响到整个系统,要求运行管理的自动化水平较高。
图7-9 单管环形管网集输流程
图7-10 开式集输流程
1—计量分离器;2—液体流量计;3—气体流量计;4、5—一级、二级油气分离器;6、9、13—储油罐;7、11—一级、二级脱水泵;8、15—脱水、外输加热炉;10—污水泵;12—电脱水器;14—外输油泵
图7-11 密闭集输流程
1—计量分离器;2—液体流量计;3—气体流量计;4、5—一级、二级油气分离器;6、10—压力缓冲罐;7—脱水泵;8、12—脱水、外输加热炉;9—电脱水器;11—外输油泵
(五)海上油田集输流程
目前通用的海上油气生产和集输系统流程主要有半海半陆式集输流程和全海式集输流程两种模式。
半海半陆式油气集输流程适用于离岸近的中型油田和油气产量大的大型油田。它是由海上平台、海底管线和陆上终端构成等部分组成的,如图7-12所示。
全海式集输流程是指油气的生产、集输、处理、储存均是在海上平台进行的,处理后的原油在海上直接装船外运。此流程适用于远离岸边的中小型海上油田。
图7-12 半海半陆式油气集输流程
三、油气初加工处理
在石油的开采过程中,伴随着原油的采出,同时也采出一定量的伴生气、水、泥沙等。在实际生产过程中,需对油井采出液进行必要的初加工处理,从而得到合格的原油和天然气。
(一)油气分离
油气分离是油田油气处理的首要环节,它是借助于油气分离器来实现油、气、水、砂等的分离。
油气分离器是油气田用得最多、最重要的设备之一,其类型很多。在生产实际过程中,应用较多的是卧式两相油气分离器和卧式油气水三相分离器等。
1.卧式油气两相分离器
卧式两相油气分离器的结构如图7-13所示,流体由油气混合物入口进入分离器,经入口分流器后,流体的流向和流速发生突变,使油气得到初步分离。在重力的作用下,分离后的液相进入集液部分,在集液部分停留足够的时间(我国规定:一般原油在分离器内的停留时间为3min,起泡原油为5~20min),使液相中的气泡上升到液面进入气相。集液部分的液相最后经原油出口流出分离器进入后续的处理环节。来自入口分流器的气体则分散在液面上方的重力沉降部分,使气体所携带的粒径较大的油滴(>100μm)靠重力沉降到气—液界面。未沉降下来的油滴则随气体进入除雾器,在除雾器内聚结、合并成大油滴,靠重力沉降到集液部分,脱出油滴的气体经气体出口流出分离器。
图7-13 卧式油气两相分离器
1—油气混合物入口;2—入口分流器;3—重力沉降部分;4—除雾器;5—压力控制阀;6—气体出口;7—出油阀;8—原油出口;9—集液部分
2.卧式油气水三相分离器
两相油气分离器只是简单地将油井产物分成气液两相。实际上,油井产物是油、气、水等的混合物,在油气分离的同时,也要实现水的分离。
图7-14 卧式油气水三相分离器
1—油气混合物入口;2—入口分流器;3—重力沉降部分;4—除雾器;5—压力控制阀;6—气体出口;7—挡油板;8—出油口;9—出水口;10—挡水板;11—油池;12—水室
卧式三相油气水分离器可以实现油气水的分离,其结构如图7-14所示,流体由油气混合物入口进入分离器,入口分流器把油气水混合物大致分成气、液两相。液相由导管引至油水界面以下进入集液部分,在集液部分油水实现分离,上层的原油及其乳状液从挡油板上层溢出进入油池,经出油口流出分离器。水经挡水板进入水室,通过出水口流出分离器。气体水平通过重力沉降部分,经除雾器后由气出口流出。
(二)原油脱水
石油的开采,伴随着产生大量的水。原油中的含水大都以游离水和乳化水两种形态存在,它们给油气集输、储运乃至石油加工带来了许多危害,因此,必须对原油进行脱水。
乳化水是水与原油形成的乳状液,其物理性质发生了很大的变化,因而是脱水的主要对象。乳化水通常有两种类型,一种是油包水型(W/O)乳化水,其水为分散相、油为连续相;另一种是水包油型(O/W)乳化水,其油为分散相、水为连续相。
原油脱水的方法很多,主要有热沉降脱水、化学脱水、离心法脱水、粗粒化脱水、电脱水等。实际脱水过程中,最常用的是热化学破乳脱水法和电脱水法。
1.热化学破乳脱水
热化学破乳脱水就是将含水原油加热到一定的温度,并向原油中加入少量的化学破乳剂,从而破坏油水乳状液的稳定性,促使水滴碰撞、聚结、沉降,以达到油水分离的目的。
2.电脱水
原油电脱水方法适合于处理含水量在30%左右的油包水型原油乳状液。它是将原油乳状液置于高压直流或交流电场中,在电场力的作用下,促使水滴合并、聚结,形成较大粒径的水滴,实现油水的分离。
原油电脱水过程中,水滴在电场中是以电泳聚结、偶极聚结、振荡聚结三种方式进行聚结合并的。其中,在交流电场中,水滴以偶极聚结、振荡聚结方式为主;在直流电场中,水滴以电泳聚结方式为主,偶极聚结方式为辅。
(三)原油稳定及轻烃回收
1.原油稳定
原油是多组分的碳氢化合物的混合物。在原油集输过程中,由于操作条件的变化,会使原油中的部分轻组分挥发,造成原油蒸发损耗。为了降低原油的蒸发损耗,充分利用油气资源,保护环境,提高原油储运过程中的安全性,须采用一系列工艺措施,将原油中挥发性强的轻组分(主要是C1~C4)脱出,降低原油的挥发性和饱和蒸气压,使原油保持稳定,这一工艺过程称为原油稳定。
原油稳定的方法很多,主要有闪蒸稳定法、分馏稳定法、大罐抽气法等。
闪蒸稳定法是将未稳定的原油加热到一定温度,然后减压闪蒸分离得到相应的气相和液相产物。这是目前应用较广的方法。闪蒸稳定法的原理流程如图7-15所示。
图7-15 闪蒸稳定法的原理流程图
1—换热器;2—加热炉;3—闪蒸塔;4—压缩机;5—冷凝器;6—分离器;7—泵
分馏稳定法是根据原油中各组分挥发度不同的特点,利用精馏的原理将原油中的C1~C4组分脱出,达到稳定的目的。分馏稳定法的典型流程如图7-16所示。分馏稳定法的主要设备是稳定塔,稳定塔是一个完全的精馏塔,塔的上部为精馏段,下部为提馏段,塔顶有回流系统,塔底有重沸系统。这种方法设备多,流程较复杂,但稳定原油的质量好。
图7-16 分馏稳定法的典型流程图
1—换热器;2—稳定塔;3—冷凝器;4—分离器;5—回流罐;6—泵;7—重沸器
大罐抽气法是利用原油处理站内的沉降脱水油罐,在罐顶安装抽气管线,利用压缩机自罐中抽出油蒸气,经增压、冷却、计量后输送至轻烃回收装置进行回收。
2.轻烃回收
轻烃是指天然气中所含的C3以上的烃类混合物,它们在天然气中以气态的形式存在,通过不同的工艺方法将它们以液态的形式回收称为轻烃回收。
轻烃回收的方法较多,常用的有固体吸附法、液体吸收法及低温分离法等。
固体吸附法是利用固体吸附剂(如活性炭、活性氧化铝等)对各种烃类的吸附能力不同,而使天然气中的各组分得以分离的方法。
液体吸收法是利用天然气中各组分在液体吸收油(如石脑油、煤油等)中的溶解度不同,而使天然气中的各组分得以分离的方法。
这两种方法是早期轻烃回收较常用的方法,由于投资高、能耗大、收率低,现已逐步为低温分离法所替代。
低温分离法是利用天然气各组分冷凝温度不同的特点,在降温过程中使各组分得以分离的方法。这种方法的特点是使气体获得低温。通常低温获得的方法主要有制冷剂制冷、膨胀机膨胀制冷及两者混合使用的制冷方法等。
(四)油田气的净化
油田气含有多种杂质,如砂粒、岩屑等固体杂质,水、凝析油等液体杂质,水蒸气、硫化氢、二氧化碳等气体杂质。固体杂质的存在,会导致管道、设备、仪表等的磨损,严重时会堵塞管道,降低输送量,影响生产安全;水蒸气的存在,不仅降低了管线的输送能力和气体热值,而且当输送压力和环境条件变化时,还可能使水蒸气从天然气流中析出,形成液态水、冰或天然气的固体水合物,从而增加管路压降,严重时堵塞管道;酸性气体H2S或CO2的存在,会加剧管线、设备的腐蚀,影响化工产品的质量。由此可见,气体净化是油田气长距离输送或进行轻烃回收前必不可少的环节。气体净化主要采用以下几种方法:
1.吸附法
吸附法是利用油田气中的不同组分在固体吸附剂表面上积聚特性不同的原理,使某些组分吸附在固体吸附剂表面,进行脱除的方法。
2.吸收法
吸收法是用适当的液体吸附剂处理气体混合物以除去其中的一种或多种组分的方法。如用液态烃吸收气态烃,用水吸收CO2,用甘醇脱水或用多乙二醇甲醚脱硫,用碱液吸收CO2等。在操作过程中,对吸收后的溶液可进行再生,使溶剂得到循环使用。
3.冷分离法
由于多组分混合气体中各组分的冷凝温度不同,在冷凝过程中高沸点组分先凝结出来,这样就可以使组分得到一定程度的分离。冷却温度越低,分离程度越高。例如低温分离法脱水、膨胀机制冷脱水等都是冷分离方法。这一方法流程简单,成本低廉,特别适用于高压气体。
4.直接转化法
直接转化法是通过适当的化学反应,使杂质转化成无害的化合物留在气体内,或者转化成比原杂质易于除去的化合物,达到净化目的。
四、油气计量
油气计量是指对石油和天然气流量的测定。在油气田生产过程中,从井口到外输间主要分为油气井产量计量、外输流量计量和交接数量计量三种。
(一)油气井产量计量
油气井产量计量是指对生产井所生产的油量和气量的测定。目的是了解油气井生产状态,为油气井管理、油气层动态分析提供资料数据。
对于产量高的油气井,通常是每口井单独设置一套计量装置,称为单井计量。对于产量低的油气井,通常是8~12口油井共用一套计量装置,并对每口油井生产的油、气、水进行计量,油井日产量要定期、定时轮换进行计量。这种计量方式称为多井计量。
油气井产量计量方法有两种:分离计量法和多相流量计量法。分离计量法是利用油气分离器先将油井产物分离成气相和液相,或者气、油和水相,然后分别计量各相的流量。由于计量精度受到分离质量的影响,且油气难以完全分离,因此,该法计量精度差,而且附属设备多,占地面积大。多相流量计量法是自动分析检测油井产物的组成和流量,进而测定油井的产油量、产气量和产液量。它是将分离、计量合成一体完成,具有体积小、精度高、操作方便等特点,是计量发展的方向。
(二)外输流量计量
外输流量计量是对石油和天然气输送流量的测定。它是输出方和接收方进行油气交接经营管理的基本依据。计量要求有连续性,仪表精度高。外输原油一般采用高精度的流量仪表连续计量出体积流量,再乘以密度,减去含水量,求出质量流量。综合计量误差一般要求在±0.35%以内。这就要求原油流量仪表要有较高的精度,同时也应定期进行标定。
(三)交接数量计量
交接数量计量是指油田内部各采油单元之间进行的油品输送流量的计量。它是衡量各采油单元完成生产指标情况,进而进行经济核算的依据。从计量方法上看,交接数量计量与外输流量计量基本相似,但由于这种计量是发生在油田内部各采油单元之间的,因此其计量精度不如外输流量计量要求高。
五、含油污水处理
目前,我国多数油田已进入开发晚期,大多采用注水方式开发,从而导致油井采出液含水量升高(有些油田的综合含水率已达90%)。在初加工处理过程中,油井采出液将脱出大量的含油污水,如果含油污水处理不合理就进行回注和排放,不仅会使油田地面设施不能正常运作,而且会因地层堵塞带来危害,影响油田安全生产,同时也会造成环境污染,因此必须合理地处理、利用含油污水。
(一)含油污水的特点
1.污水含油
污水含油量一般为1000 mg/L左右,少部分油田污水含油量高达3000~5000 mg/L,而且同一污水站瞬时污水的含油量也具有一定的波动性。一般来讲,污水中的油是以浮油(油珠直径大于100μm)、分散油(油珠直径10~100μm)、乳化油(油珠直径0.1~10μm)和溶解油(油珠直径小于0.1μm)四种形态分布于水中的。
2.污水含盐
含油污水中含有多种离子,主要包括Ca2+、Mg2+、K+、Na+、Fe2+等阳离子和Cl-、HCO3-、CO23-、SO24-等阴离子。这些离子之间相互结合,生成各种盐类。在一定的条件下,CaCO3、CaSO4、MgCO3等溶解度较小的盐类易形成沉淀。它们如悬浮在水中,会使水浑浊;如沉积在管壁上,会引起结垢。
3.污水含气
污水中溶解有O2、H2S、CO2等多种有害气体。其中,O2是很强的去极化剂,能使阳极的铁原子失去电子,生成Fe2+或Fe3+,进一步生成Fe(OH)3沉淀。同样,CO2、H2S等酸性气体也能与铁原子结合生成FeCO3垢或FeS沉淀。它们都会大大加剧金属设备和管线的腐蚀、结垢。
4.污水含悬浮固体
污水中的悬浮固体是指污水中所含的固体悬浮物,其颗粒直径范围在1~100μm之间,主要包括泥沙、各种腐蚀产物及垢、细菌、胶质、沥青质等。这些悬浮固体悬浮在水中,会使水浑浊;附着在管壁上,会形成沉淀,引起管壁腐蚀;回注于储油层,会使孔隙堵塞,影响油井产量。
综上所述,污水中的成分复杂,其显著特点是腐蚀性强、结垢快。生产中,应重点针对这类问题加以分析,采取有效措施加以处理。
(二)含油污水处理流程
含油污水处理工艺流程因污水水质、净化处理要求不同而异。按照处理工艺过程,大致可将其划分为自然除油—混凝沉降—压力过滤流程、压力式聚结沉降分离—过滤流程、浮选式流程及开式生化处理流程等。
1.自然除油—混凝沉降—压力过滤流程
自然除油—混凝沉降—压力过滤流程如图7-17所示。从脱水转油站送来的含油污水经自然除油初步沉降后,投加混凝剂进入混凝沉降罐进行混凝沉降。然后进入缓冲罐,经提升泵加压后进入压力滤罐进行压力过滤。滤后水再加杀菌剂,得到合格的净化水,外输用于回注;自然除油罐和混凝沉降罐回收的原油进入污油罐,经油泵加压输送至油站;对压力滤罐进行反冲洗时,反洗水泵从反洗水罐提水,反冲洗排水进入回收水罐,经回收水泵均匀地加入自然除油罐中再进行处理。
该流程处理效果良好,对污水含油量、水量变化波动适应性强,但当处理规模较大时,压力滤罐数量较多、操作量大,处理工艺自动化程度稍低。
图7-17 自然除油—混凝沉降—压力过滤流程
2.压力式聚结沉降分离—过滤流程
压力式聚结沉降分离—过滤流程如图7-18所示。它加强了流程前段除油和后段过滤净化。脱水站送来的污水,若压力较高,可进旋流除油器;若压力适中,可进接收罐除油。为了提高沉降净化效果,在压力沉降之前增加一级聚结(亦称粗粒化)除油,使油珠粒径变大,易于沉降分离。抑或采用旋流除油后直接进入压力沉降。根据对净化水质的要求也可设置一级过滤和二级过滤净化。
图7-18 压力式聚结沉降分离—过滤流程
压力式聚结沉降分离—过滤流程处理净化效率较高,效果良好,污水在处理流程内停留时间较短,系统机械化、自动化水平稍高,但适应水质、水量波动能力稍低。
3.浮选式流程
浮选式流程如图7-19所示。该流程首端大都采用溶气气浮,再用诱导气浮或射流气浮取代混凝沉降设施,后端根据净化水回注要求,可设一级过滤和精细过滤装置。
图7-19 浮选式流程
浮选式流程处理效率高,系统自动化程度高,现场预制工作量小,广泛应用于海上采油平台污水系统;在陆上油田,广泛用于稠油污水处理。但该流程动力消耗大,维护工作量稍大。
4.开式生化处理流程
开式生化处理流程如图7-20所示。它是针对部分油田污水采出量较大、不能完全回注、需要部分处理达标排放的实际设计的。含油污水经过平流隔油池除油沉降,再经过溶气浮选池净化,然后进入一级、二级生物降解池和沉降池,最后经提升泵提升至滤池进行砂滤或吸附过滤达标外排。
图7-20 开式生化处理流程图
总之,上述几种流程是目前含油污水处理较常用的流程。当然,由于各油田污水的具体情况不同,上述流程也并非是绝对的,实际应用中,应根据具体的情况选择合适的流程。
油气成藏动力学研究系统
来源:《分析测试百科网》
M-312新型轻量便携式气相色谱仪,主要应用于:矿山安全、石油化工、工业卫生、环境保护、消防安全、植被保护、食品安全、在线以及烟气监测,室内安全监测、质量控制、天然气、职业安全卫生、反恐防暴、生化反恐等行业和领域等,ppb~%级挥发性有机物,S化合物,天然气,永久气体检测水平。
运行原理是气相色谱的分离和一系列的先进检测器,该仪器可以广泛应用于不同领域,可以随意满足实验室或者现场测试要求。检测器的电子都是紧凑的模块化设计,检测器的更换只需移下色谱柱、接头、和2个螺丝,就可轻松实现。5个检测器只需3套电子部件,系统升级只需再购买一个或者二个检测器和一个电子部件。 PeakWorks色谱软件是双通道数据处理系统。
该仪器遵循国内国际标准接口,可以兼容安装任何制造商生产标准接口的填充柱(1/8”或者1/16”)和毛细柱(0.53或者0.32mm内径)以及PLOT柱。可选配加热式进样口,以便分析液体样品。
数据处理的计算是由强大的PeakWorks色谱软件来执行。该软件直接安装在内置电脑上;无需任何外接电脑;操作及其简单,无需现场拼装。可以对任何一种气体都进行响应。
五大检测器:
-PID检测器:挥发性有机碳,芳香类化合物,不饱和烃,硫类化合物,无机气体(H2S、AsH3、PH3、NH3、…..…)。PID具备非常低的 PPB级至%浓度的检出限水平,是用于环境分析和质量控制的理想检测器。也非常适合于阈限值、水质分析、土壤分析、以及现场测量等。
-TCD检测器(热导检测器):烃类化合物,无机气体和永久性气体,适合于质量控制,矿进气体分歧、天然气分析,液化石油气分析,以及工业气体分析。其线性工作范围为ppm至100%。
-FUV检测器(远紫外检测器):检测无机气体和永久气体;H2O、 O2、N2O的测量分析范围也达到ppb~ppm的水平。适合用于大气环境气体、矿山矿进气体分析。
-FID检测器:响应所有的烃类化合物包括甲烷,用于环境现场分析,垃圾填埋气,油气生产检测等。
-COD检测器:响应几乎所有的可氧化化合物以及H2、NH3气体物质。
内置奔腾处理器,7”彩色监视器,Windows XP操作系统,触摸屏编程,方便快捷,操作简单无需鼠标,坚固外壳,适宜现场运行。可分析气体或者液体样品。使用电池或者交流电源,可置换检测器,扩展应用范围。可选配一个或者二个下列检测器:PID、TCD、FUV、FID、COD或者FPD;
PeakWorks 色谱软件-次积分,二次积分,峰面积或者峰高,切线法或者基线平行法。简单易学,对初学者来说是最理想的分析仪器。
选件:
l 检测器 PID,,FPD,或者FID
l 针对矿山救护行业,我们选用检测器为:TCD,FUV;
l 内置气瓶充气接口
PeakWorks?分析功能:
PeakWorks? 是Model 312的色谱工作软件。
PeakWorks?控制功能:
PeakWorks?应用于我们的手提式气相色谱仪以及在线气相色谱仪已经有10多年的历史,它在windows XP 下运行,Model 312有一个7”触摸屏,可以进行自由编程。
检测器/放大器的模拟信号在ADC板那里转换为数字信号。PeakWorks?通过处理这些信号以及保留时间和峰高/峰面积在确定化学物质的浓度。
简单易学:
该软件有这些菜单选项:File(文档),Edit(编辑),View(视图),Method(方法),Run(运行),Options(选项),Window (窗口),Help (帮助)。
File – 储存文件,色谱图为rtf格式文档,以及退出(exit)。
Edit – 编辑。
View – 放大视图,可以观察色谱图的一个或者多个色谱峰。
检测时间快,开机启动时间短,从气体进样,然后出分析结果,全过程只需几分钟即可实时完成。全过程操作简单。
产品优点:
1、M-312带内置触摸屏电脑,可以非常方便进行气体分析的操作,其他产品不具备;
2、内置电脑是应用Windows XP操作系统和PeakWorks专用色谱软件,操作起来非常简单,易学易用;
3、重量轻和充电电池的供电系统可以让M-312型便携式气相色谱仪被用于任何地方进行分析测试,非常便于携带;
4、五大检测器,可以检验各种气体,针对矿山行业,仅需要两种检测器(TCD、FUV),就完全可以检测出矿山常见的气体(O2、 CO2 CH4 CO、H2 N2 H2S SO2 C2H6 C3H8 C4H4 C2H2),能在两分钟内即可检测出气体成分、浓度;
5、可进行连续分析;
6、内置气体爆炸三角分析软件,能及时测量气体爆炸气体全组分分析和爆炸危险程度判别(爆炸三角形法);其它气相色谱仪是不具备的
朋友可以到行业内专业的网站进行交流学习!
分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。
石油天然气关键参数研究与获取
广义的油气成藏动力学研究,泛指一切有关油气生、排、运、聚的机理性研究。文中所说的“油气成藏动力学研究系统”,是指在某一特定地质单元内,在相应的烃源体和流体输导体系发育的格架下,通过对温度、压力(势)、应力、含烃流体等各种物理、化学场的综合定量研究,在古构造发育背景上,历史再现油气生、排、运、聚乃至成藏全过程的多学科综合研究体系,这实际上是含油气系统意义上的一种定量动力学研究体系。
油气成藏动力学研究系统由模型研究与模拟研究两部分组成,在理论上集成了石油地质学的动力学研究成果,整个研究过程是在烃源体和流体输导体系的三维格架上进行的。这个研究系统有强大的计算机工作平台支持,模型研究与模拟研究结果的迭代反馈降低了地质解释中的多解性,是新一代石油地质勘探研究工作系统。该系统在珠江口盆地应用,显示了研究系统的具体应用效果。
“油气成藏动力学研究”是“九五”期间,国家自然科学基金委员会和中国海油联合资助的重点项目《南海北部大陆边缘盆地的活动热流体和油气成藏动力学及其地质背景》的一项主要研究内容。目前,这一项目已在基础理论上获得了许多创新成果,并已基本形成了油气成藏动力学研究的概念体系和可用于油气勘探实际的、具有一定技术优势的工作方法。
海上油气勘探成本较高,这就迫使我们不得不对许多尚具探索性的研究领域给予关注,如油气运移和聚集问题等。
油气运移与聚集研究是石油地质学研究的重要课题,它涉及石油地质学整体研究体系。因此,要形成可操作的油气运聚研究方法,就必须从整个研究体系出发,以动力学为核心。以下分油气成藏动力学研究的技术背景、油气成藏动力学研究系统的基本框架、油气成藏动力学模拟系统和应用实例等4部分对油气成藏动力学研究系统作一概要介绍。
一、油气成藏动力学研究的技术背景
20世纪60~70年代,石油生成的化学动力学研究卓有成效,并取得了具有重要意义的研究成果。
20世纪80~90年代,地下流体动力场(尤其是压力场)研究成为石油地质学研究的热点。层序地层学和地震岩性预测技术的发展,给构筑盆地烃源体和流体输导体系格架提供了可能。计算机软、硬件的快速发展,将实现大数据量的盆地模拟运算提高到油气运移与聚集的模拟阶段。含油气系统理论的兴起,将石油地质学研究提高到系统论的高度,并已经出现把含油气系统视为动态石油生成和聚集的物理、化学系统的概念,以及试图用化学动力学控制的生烃子系统和受物理动力学控制的运移/捕集子系统,来构筑含油气系统的动力学思路。G.Demaison所阐述的含油气系统概念,基本上是以动力学为基础、体现石油地质学发展趋势(即集成动力学研究成果)而形成的完整概念体系,它是把油气自生成至成藏过程,作为一个完整的动力学过程进行研究。
近年来,“含油气系统”一词已成为油气勘探研究中的热门术语,甚至可以说已经形成了一股“含油气系统”热。其实,含油气系统是石油地质学与系统科学相结合的产物,由于不同学者看问题的角度和视野不同,因而对含油气系统的描述各有侧重(表5-9)。例如L.B.Magoon和W.G.Dow着眼于大区域范围内预测油气资源存在的可能性,他们所拟定的含油气系统的规模,相当于含油气区或超大型含油气盆地,相应的描述方法是较为粗略的结构图解法;A.Perrodon则以提供盆地内远景区圈定依据为目的,提出的含油气系统规模大致与盆地相当,选择的描述方法也是粗线条的模型类比法;G.Demaison和B.J.Huizinga拟定的含油气系统级别最低,仅与凹陷相当,所选择的研究方法是最精细的成因分析法。如果以区带或勘探目标为目的,那么G.Demaison和B.J.Huizinga关于含油气系统的研究方法是最值得借鉴的。
表5-9 不同学者对含油气系统表述的比较
在油气勘探的区带(Play)和目标(Prospect)研究中,通常应用的方法是传统的石油地质学方法,其研究重点是石油地质条件,研究内容是各项地质条件的综合评价,目的是得到用圈闭法计算的圈闭资源量和相应的地质风险(尽管其中也应用了许多动力学方法,如生烃动力学、古温度场、压力场、应力场研究等)。含油气系统理论的兴起及其在油气勘探中的广泛应用,使得生产研究对理论指导的渴求愈来愈迫切。
在含油气系统理论应用中,一般应用L.B.Magoon和W.G.Dow的描述方法描述次级含油气系统者居多,其原因主要是这种描述方法可操作性强,便于接受。虽然G.Demaison和B.J.Huizinga的研究方法更适于勘探区带评价,但由于未形成可操作的研究系统,因而应用实例见得不多。
广义的油气成藏动力学研究,泛指一切有关油气生、排、运、聚的机理性研究。本文所说的“油气成藏动力学研究系统”,是指在某一特定的地质单元内,在相应的烃源体和流体输导体系发育的格架下,通过对温度、压力(势)、应力、含烃流体等各种物理、化学场的综合定量研究,在古构造发育的背景上历史再现油气生、排、运、聚乃至成藏全过程的多学科综合研究,目的是由油气成藏的动力学机理出发,进行区带和勘探目标的评价,并形成一套可操作的工作方法。由于要追索油气生、排、运、聚的全过程,所以油气成藏动力学研究必须要建立在含烃流体的载体即烃源体与流体输导体系的格架基础之上,控制油气生、排、运、聚的物理、化学动力场也必然成为油气成藏动力学研究的重要内容。
要历史地定量描述油气生、排、运、聚的全过程,计算机模拟技术是不可缺少的工作手段。通过对油气勘探区带和目标评价研究中,传统石油地质学方法、含油气系统方法以及油气成藏动力学方法的比较,不难看出,三者从出发点到具体工作内容乃至最终成果的表现都有本质的不同(表5-10)。
表5-10 油气勘探研究中3种不同工作方法的比较
油气成藏动力学的形成是石油地质学发展的必然,当前已经具备了构成完整研究体系的基本条件。今后,随着油气成藏机理研究的不断深化,油气成藏动力学必将日臻完善,并在油气勘探中发挥重要作用。
二、油气成藏动力学研究系统的基本框架
油气成藏动力学研究系统包括模型研究和模拟研究两部分。模型研究的任务:①根据所获得的地质资料,建立盆地构造-沉积格架,为建立三维数字盆地提供模型;②在数字化盆地基础上,追溯油气生、排、运、聚过程,为模拟研究提供油气成藏机理和油气运移路径等控制模型。模拟研究是用油气成藏动力学模拟系统模拟油气生、排、运、聚过程,在逼近勘探实际过程中,修正输入模型,最终得到定量化的结果(图5-10)。
图5-10 油气成藏动力学研究总体框图
(一)油气成藏动力学模型研究
模型研究是油气成藏动力学研究的基础,包括盆地模型和油气运聚的控制模型两个部分。
1.盆地模型
主要指盆地的沉积-构造格架以及相应的物理和有机地球化学参数,用以建立三维数字盆地。盆地模型是进行人工控制性油气生、排、运、聚模型研究的基础,也是油气成藏动力学模拟研究的基础,由以下7个部分组成。
a.沉积体模型:主要指各层沉积相图,用以建立烃源体、输导体和盖层体系模型;
b.构造体模型:包括各层构造图和主要圈闭与断裂体系的发育研究,用来建立三维构造数据体,实现回剥,以得到各期各层古构造图;
c.烃源体模型:对沉积体模型中有生烃能力的沉积体赋予有机地球化学属性,如有机碳含量、干酪根类型、热模拟产烃率(或活化能、频率因子),以进行生排烃量模拟;
d.输导体模型:对具有渗透能力的沉积体赋予储层物理属性;对断裂、裂隙性输导体进行历史发育研究,重点确定其历史发育过程中对流体的输导能力;
e.温度场模型:给出现今温度梯度曲线、Ro-深度关系曲线,以模拟古、今地温场,逼近现今烃源岩热演化结果;
f.压力场模型:模拟古、今压力场,进行各层古、今流体势研究;
g.应力场模型:为应力场模拟提供参数,分析应力场发育与油气运移间的关系。
2.油气生、排、运、聚的控制模型
是指用人工方法建立的具体盆地、凹陷(或含油气体系)的油气生成、运移、聚集机理性模型。尽管我们对油气生、排、运、聚的微观世界还有大量未知领域,但是在宏观上通过集成现有理论和应用模型,足以建立起基本概念框架,以描述具体盆地油气成藏动力学过程。它包括以下3个主要模型。
a.油气生成的动力学模型:这是油气生、排、运、聚动力学模型中最成熟的部分。自20世纪70年代康南用化学动力学公式描述有机质生烃过程以来,该模型已被广大石油地质研究人员所采用,并得到深化。魏格斯(1985)用热解法计算生烃量方法,也是目前我国普遍应用的量化生烃史的主要方法。各烃源层各地质历史阶段Ro等值线图、热演化史剖面图、生烃量等值线图和生烃量史表等“3图1表”在描述生烃过程中是必要的。
b.烃类初次运移的动力学模型:孔隙体积法和残烃量法是目前生产研究中普遍采用的排烃量计算方法。孔隙体积法的假设前提是:连续油相是初次运移的主要相态,当生油层的孔隙(或裂隙)体积中的含油饱和度超过临界运移饱和度时,石油在压实作用下则以连续油相与水一起排出。残烃量法是用计算的生烃量减去实测残烃量(氯仿沥青“A”,或总烃HC,或热解法求得的S1)而求得排烃量。初次运移的方向主要受剩余压力控制,由于烃源体的剩余压力总是高于与之相接触的流体输导体,因此与烃源体相接触的流体输导体是含烃流体初次运移的主要指向。这一运移机理在理论上可以用渗流定律描述,但实际地质条件却往往超出渗流定律的前提条件。因此,在这里应用计算机人工智能模拟方法是必要的。人工初次运移模型的描述是在烃源体和与之相接触的流体输导体分布图上进行的,其主要工作内容是根据输导体与烃源体接触的比表面积、渗透能力和输导体相互间的配置关系,给出不同的排烃量分配方案。
c.烃类二次运移的动力学模型:烃类二次运移的主要动力是油/水的密度差所产生的浮力和地层孔隙流体压力(包括压实水流和大气水流)。在静水压力条件下,流体输导体中的油气在浮力作用下,总是由下向上指向低势方向,并且在总体上受区域构造背景控制。后期地表水所产生的水势梯度变化也应给予必要关注。与描述初次运移一样,油气二次运移的描述也必须在流体输导体系格架上进行。流体输导体系的复杂构成(孔隙体、裂隙体、不整合面等)及其在时空上的四维演化,也迫使我们不得不借助于计算机人工智能模拟来完成。通常,我们是利用油/岩的有机地球化学资料,分析原油与烃源岩间的亲缘关系,回答油气在什么时间充注、由哪里来、到哪里去等问题,从而建立起油气成藏机理模型,给绘制成藏机理剖面和含油气体系平面图提供依据,并在上述基础上选择关键时刻,在主要输导体顶面古构造图上,描绘油气运移的主要路径。
之所以把人工分析的油气成藏机理模型称作“油气生、排、运、聚控制模型,一方面是由于对油气成藏机理的认识还非常有限,但通过对每个具体盆地油气成藏机理研究,却都有可能发现新的成藏机理模型,从而丰富和完善油气成藏动力学知识宝库,对油气成藏动力学的发展可以起到控制作用;另一方面,对于油气成藏动力学研究系统来说,成藏机理模型研究是基础,它对整个研究结果可以起到控制作用。换句话说,模拟结果必须与控制模型相符合(如果控制模型的建立有可靠依据的话)。这里也有两层含义:一是油气成藏动力学模拟系统必须符合控制模型的需要;二是模拟结果必须逼近控制模型。
(二)油气成藏动力学模拟研究
一般来说,用人工方法很难完成油气成藏动力学研究浩繁的工作量,比如不可能用手工方法完成各期、各层古构造的回剥,也不可能用手工方法完成各期、各层生烃强度等值线图的制作等等。然而,现今的计算机模拟方法,可以帮助我们建立起三维数字化盆地,并且在此基础上完成浩繁的计算合成图。同时,现代三维可视化技术还能为我们观察和修正盆地模型工作提供极为便利的手段。因此可以说,模拟技术是油气成藏动力学研究结果定量化和可视化不可缺少的手段。
从石油地质学研究本身来说,几乎所得到的每项参数,或者建立的每个模型都具有多解性。但是,油气成藏动力学模拟系统可以把给出的各项参数和模型,放在一个统一的动力学系统中运行,从而检验各项参数和模型的可匹配性,进而使不合理的部分得以修正。
油气成藏动力学模拟系统是油气成藏动力学研究结果定量化和可视化的手段,也是一种模拟实验工具。由于参数或模型多解性的存在,多方案的模拟比较是必需的。只有通过多方案模拟,不断修正输入的参数和模型,使之逼近实际勘探结果,才可将模拟结果作为外推预测的依据。
三、油气成藏动力学模拟系统
油气成藏动力学模拟系统的基础是油气成藏动力学理论,它主要以含油气系统为指导,在烃源体与输导体的格架上,完成三维构造地层发育史模拟,以及温度场、压力场、流体场、应力场发育史定量模拟,用人工智能和现代数学技术,再现地质单元体内油气生、排、运、聚的历史演化过程,进而对油气成藏过程进行模拟。其目的是为地质家提供一种油气成藏过程定量化和可视化的计算机工作平台。
中国海油与中国地质大学(武汉)联合开发的油气成藏动力学模拟系统,有工作站版(英文版)和微机版(中文版)两种版本,其软件系统平台为IDL系统。该系统由1个工作平台(图5-11)、5个模拟子系统、13个模拟模块及许多子模块构成(图5-12),其中三维沉积体静态模拟子系统担负数据预处理任务,主要是将输入的二维构造和沉积体信息(包括物理、化学参数)转化为三维数据体,而三维构造体动态模拟子系统,则可将每一时刻生成的三维空间动态物理、化学参数,提供给油气生排模拟子系统和人工智能模拟子系统,以实现油气生、排、运、聚的三维动态模拟。目前这个系统已通过验收,并投入应用。
图5-11 油气成藏动力学模拟系统软件结构框图
图5-12 油气成藏动力学系统平台结构框图
四、油气成藏动力学研究实例
(一)珠一坳陷油气多源、多期汇聚主通道运聚模型
在烃源体和油气输导体系模型的基础上,通过压力场、地下水动力场的分析,并详细进行了原油和烃源岩有机地球化学研究,明确了两种不同类型烃源岩及其所生成原油的物理性质与生物标记化合物特征,经两类端元油配比实验得到混合油判别参数,C30-4-甲基甾烷/C29甾烷、三环萜烷/藿烷和C30αα/(αα+ββ)比值与运移距离成良好的线性关系,为运移距离的判断提供了可靠依据。从而科学地描述了珠一坳陷油气多源、多期汇聚的主通道运聚模型。
图5-13 惠州凹陷-东沙隆起油气运移路径图
1—油藏;2—油气运移方向;3—地下水运动方向
珠江口盆地珠一坳陷的惠州凹陷、陆丰凹陷和相邻的东沙隆起,在裂陷早期(早—中始新世)凹陷中沉积了一套湖相烃源岩。裂陷晚期(晚始新世—早渐新世)的河流相砂岩和破裂不整合面之上的渐新世中期滨海相砂岩,共同构成了油气的输导层。早中新世晚期及其以后被广泛的陆架泥岩覆盖,形成区域性盖层。区域盖层之下的三角洲砂岩和碳酸盐岩是主要储层。这一简单的生油层/输导层/储层/盖层关系为油气运移研究提供了便利条件(图5-13)。
惠州凹陷和东沙隆起各井存在3种类型原油:I类原油以惠州33-1-1井、西江30-2-1井为代表,高含C30-4-甲基甾烷,与文昌组烃源岩近似;Ⅲ类原油以惠州9-2-1井为代表,富含双杜松烷,是典型的恩平组高等植物烃源产物;绝大部分井都同时含有C30-4-甲基甾烷和双杜松烷,是文昌组与恩平组原油的混合产物,我们称之为Ⅱ类原油。
研究区WT/C30H、C30/C29甾烷和C19/C23三环萜烷比值的平面分布说明:东沙隆起上主要分布I类原油,在惠州坳陷内部及其边缘主要分布Ⅱ类原油,证明文昌组生烃量大,油气运移范围较广,后期恩平组生成的原油运移范围仅限于凹陷内部及其边缘(图5-14)。
图5-14 惠州凹陷-东沙隆起接壤部位两期油气运移主通道
1—T5层构造等值线(m);2—油田;3—钻井位置及编号;4—早期文昌组I类原油运移路径;5—与早期文昌组原油运移路径叠加的晚期恩平组原油运移路径
(二)珠三坳陷多含油气系统油气成藏动力学研究
珠三坳陷是珠江口裂谷盆地的一部分,早第三纪为裂陷期,晚第三纪为热沉降期,破裂不整合发育于早第三纪末(23.3Ma)。古新世至渐新世早期(神狐组、文昌组、恩平组沉积时)为裂谷湖泊充填期,是主要烃源岩发育期。渐新世晚期(珠海组沉积时)海水入侵,沉积了海湾相砂泥岩,形成上下两套储盖组合,是坳陷内的主要储集层段。中新世珠江组下部为退积的海湾相沉积,是本区凸起部位主要储层。珠江组沉积晚期又一次海侵,成为开阔浅海,以泥质沉积为主,是本区区域性盖层。中中新世(韩江组沉积时)及其以后(粤海组、万山组)一直为开阔海沉积。
珠三坳陷的文昌A、B凹陷是主要生烃凹陷(占总生烃量的97.5%),两个凹陷生烃史有显著差别。文昌A凹陷文昌组生油高峰在恩平期(占总生烃量的40%),晚第三纪进入裂解气形成阶段。恩平组生烃高峰在珠江期,生气高峰在韩江-粤海期(图5-15)。文昌B凹陷恩平组基本未进入生烃门限,生烃量很小。文昌-神狐组是主要生油层,由于凹陷较陡,没有明显生烃高峰。自恩平期开始生烃,各期生烃量都在3%~5%之间,至第四纪已小于1%。
图5-15 珠二坳陷圈闭形成与生烃高峰期配置关系图
源岩与油气有机地球化学研究结果表明,文昌A凹陷油气主要来自恩平组含煤地层,文昌B凹陷油气主要来自文昌组湖相泥岩,琼海低凸起为文昌A、B两个含油气系统的叠合部位,同时接受了两个凹陷的油源(图5-16)。
通过系统油气成藏动力学研究,明确了神狐隆起是油气聚集有利方向。认为珠江组石油未风险聚集量为6.3×108t,天然气未风险聚集量为57×1012m3。珠海组未风险油聚集量为0.85×108t,未风险天然气聚集量为505×1012m3。文昌凹陷南侧的神狐隆起是油气运聚主要方向,韩江期以后珠江组总运移量大于10×108m3(油当量),珠海组总运移量大于12×108m3 (油当量);珠江组未风险石油聚集量5.4×108t,珠海组未风险天然气聚集量354×1012m3。
最终模拟结果石油主要聚集量在神狐隆起上的珠江组中,天然气主要聚集量在文昌A凹陷南侧的珠海组中(图5-17、图5-18)。这一模拟结果与模型研究结果相符,为珠三坳陷提供了具有巨大勘探潜力的新领域。
评价参数直接影响评价方法的有效性,不同类型的参数作用不同。有效烃源岩有机碳下限、产烃率图版、运聚系数是成因法的关键参数;最小油气田规模对统计法计算结果有较大影响;油气资源丰度是应用类比法的依据,由已知区带的油气资源丰度评价未知区带的资源丰度;可采系数是将地质资源量转化成可采资源量的关键参数。
(一)刻度区解剖
1.刻度区的定义
刻度区解剖是本次资源评价的特色之一,也是油气资源评价的重要组成部分。刻度区解剖的目的是通过对地质条件和资源潜力认识较清楚的地区的分析,总结地质条件与资源潜力的关系,建立两者之间的参数纽带,进而为资源潜力的类比分析提供参照依据。
刻度区是为取准资源评价关键参数,以保证资源评价的客观性而选择的满足“勘探程度高、资源探明率高、地质认识程度高”三高要求的三维地质单元。刻度区可以是一个盆地(凹陷)、一个油气运聚单元、一个区带、一个成藏组合、一个层系或一个二级构造带等。为了正确和客观认识地质条件和资源潜力,刻度区的选取在考虑“三高”条件的基础上,应尽量考虑不同地质类型的综合,这样可以更充分体现油气资源丰度与地质因素之间的关系。
2.刻度区解剖内容与方法
刻度区解剖主要围绕油气成藏条件、资源量及参数三个核心展开,剖析三者之间的关联规律和定量关系。
(1)成藏特征和成藏主控因素分析。成藏特征和成藏主控因素分析实质上是对选择的刻度区进行成藏特征总结,精细刻画出成藏的定性、定量的主控因素与参数,便于评价区确定类比对象。在一个含油气盆地、含油气系统、坳陷、凹陷的成藏规律刻画中,其成藏特征差异大,故一般最好选择以含油气系统(或坳陷)及其间的运聚单元作为对象,更便于有效的类比应用。油气运聚单元是盆地(凹陷)中具有相似油气聚集特征的独立的和完整的石油地质系统,是以盆地(凹陷)的油气聚集带为核心,并包含为该油气聚集带提供油气源的有效烃源岩。油气运聚单元是有效烃源岩、油气运移通道、有效储集层、有效盖层、有效的圈闭等要素在时间和空间上的有机组合。一个油气运聚单元可以有多个有效烃源岩体和烃源岩区为其供烃,但同一个油气运聚单元的油气聚集特征是相似的。一个油气运聚单元可以只包含一个油气成藏组合,也可以包含在纵向上叠置的多个油气成藏组合。因此刻度区地质条件的评价与定量刻画就是按照运聚单元→成藏组合→油气藏的层次路线综合分析烃源条件、储层条件、圈闭条件、保存条件以及配套条件等油气成藏条件。盆地模拟是地质评价流程中的一个重要组成部分,其作用主要体现在三个方面:其一是通过盆地模拟反映流体势特征,进而确定油气运聚单元的边界;其二是提供烃源参数,如生烃强度、生烃量、有效烃源岩面积等;其三是通过关键时刻的获取来反映油气成藏的动态作用过程。
(2)油气资源量确定。刻度区资源量计算与一般意义上的资源量计算稍有不同,正是由于刻度区的“三高”背景,特别是选定的刻度区探明程度越高越好,计算出的资源量更准确有利于求准各类评价参数。在本次刻度区解剖研究中,主要采用了统计法来计算刻度区的资源量,统计法中包括油藏规模序列法、油藏发现序列法、年发现率法、探井发现率法、进尺发现率法以及老油田储量增长法,不同方法估算出的资源量采用特尔菲加权综合。盆地模拟在计算生烃量方面技术已经比较成熟,因此刻度区(运聚单元)的生烃量仍由盆地模拟方法计算。
(3)油气资源参数研究。通过刻度区解剖,建立了参数评价体系和预测模型,获得了地质条件定量描述参数、资源量计算参数和经济评价参数,如运聚系数、资源丰度等关键参数。从刻度区获得的资源量与生油量之比可计算出运聚系数,刻度区的资源量与面积之比可获得单位面积的资源丰度,还可得到其他参数等。由于盆地内坳陷(凹陷)内各单元成藏条件差异,求得的参数是不同的,故细分若干运聚单元,求取不同单元的参数,这样用于类比区会更符合实际。
3.刻度区研究成果与应用
通过刻度区解剖研究,系统地获得运聚系数、油气资源丰度等多项关键参数,为油气资源评价提供各类评价单元类比参数选取的标准,保证评价结果科学合理。如中国石油解剖的辽河坳陷大民屯凹陷级刻度区,通过对其烃源条件、储层条件、圈闭条件、保存条件以及配套条件五方面精细研究,获得了22项量化的成藏条件的系统参数。根据大民屯凹陷内划分的六个运聚单元,分别计算各单元的生油量和资源量,直接获得六个单元的运聚系数。同时计算出各运聚单元单位面积的资源量,获得不同成藏条件下的资源丰度参数(表4-5)。
表4-5 大民屯凹陷刻度区解剖参数汇总表
在中国石油128个刻度区的基础上,各单位根据评价需要,又解剖了一定数量的刻度区。其中,中国石油利用已有刻度区128个,新解剖刻度区4个,共应用132个;中石化新解剖42个;中海油新解剖4个;延长油矿新解剖3个。各项目共应用了181刻度区,这些刻度区涵盖了我国主要含油气盆地中的大部分不同类型的坳陷、凹陷、运聚单元和区带,基本满足了不同评价区的需要。各种类型刻度区统计见表4-6。
表4-6 各种类型刻度区统计表
(二)有效烃源岩有机碳下限
有效烃源岩有机碳下限是指烃源岩中有机碳含量的最小值,小于该值的烃源岩生成的烃量不能形成有规模的油气聚集。有效烃源岩有机碳下限是确定烃源岩体积的主要参数,直接影响生烃量的计算结果。
在大量烃源岩样品分析化验和有关地质资料研究基础上,明确了不同岩类有效烃源岩有机碳下限标准。陆相泥岩有效烃源岩有机碳下限为0.8%,海相泥岩为0.5%,碳酸盐岩为0.2%~0.5%,煤系源岩为1.5%。例如,陆相泥岩TO C与S1+S2关系表明,S1+S2在TO C为0.8%时出现拐点,有效烃源岩有机碳下限定为0.8%;碳酸盐岩气源岩残余吸附气量与有机碳关系表明,残余吸附气量在有机碳为0.2%处出现拐点,有效烃源岩有机碳下限定为0.2%(图4-1、图4-2)。
图4-1 陆相泥岩TOC与S1+S2关系图
图4-2 碳酸盐岩气源岩残余吸附气量与有机碳关系图
对于勘探实践中已经发现油气藏,但烃源岩有机碳含量未达统一下限的盆地,根据实际情况可进行适当调整。如柴达木盆地柴西地区,在分析了大量烃源岩有机碳和S1+S2指标资料后,明确该区有机碳含量下限为0.4%时,即达到有效烃源岩标准,并被发现亿吨级尕斯库勒大油田的勘探实践所证实。在渤海湾盆地评价过程中,建立起相对统一的有效烃源岩丰度取值下限标准:碳酸盐岩气源岩丰度下限取0.2%,碳酸盐岩油源岩丰度下限取0.5%,湖相泥岩丰度下限取1.0%。
有效烃源岩有机碳下限的基本统一,保证了生烃量计算标准的相对一致和全国范围内的可比。
(三)产烃率图版
烃源岩产烃率图版是用盆地模拟方法计算烃源岩生烃量和资源量的关键参数。产烃率图版一般采用烃源岩热模拟实验方法获得。
1.液态烃产率图版
利用密闭容器加水热模拟实验方法,对中国陆相盆地不同类型烃源岩进行了热模拟实验。模拟实验所用样品取自松辽、渤海湾等10个盆地,包括侏罗系、白垩系和古近系的湖相泥岩、煤系泥岩和煤3大类烃源岩。其中湖相泥岩烃源岩的有机质类型包括Ⅰ型、Ⅱ1型、Ⅱ2型和Ⅲ型,煤系泥岩烃源岩的有机质类型包括Ⅱ2型和Ⅲ型,煤烃源岩的有机质包括Ⅱ1型、Ⅱ2型和Ⅲ型。根据模拟实验结果,编制了不同类型烃源岩的液态烃产率图版(图4-3、图4-4、图4-5)。
图4-3 湖相泥岩烃源岩液态烃产率图版
图4-4 煤系泥岩烃源岩液态烃产率图版
图4-5 煤烃源岩液态烃产率图版
2.产气率图版
由于生物气生气机制与干酪根成气和原油热裂解气的生气机制不同,因此,其产气率与干酪根和原油裂解气产气率求取方式不同。
(1)生物气产气率。对生物气源岩样品在25℃~75℃的条件下进行细菌培养产生生物气,由此得到不同温阶下各类有机质的生物气产率。在模拟实验结果的基础上,结合前人的研究结果,分别建立了淡水环境、滨海环境和盐湖环境中不同类型有机质的生物气产气率图版及演化模式。
(2)干酪根和原油裂解气产气率。对于不同类型气源岩油产气率,国内外学者及一、二轮资源评价中已做过大量的工作。较多的实验是应用热压模拟方法对各种类型烃源岩进行产油及产气率实验,这种方法所计算的产气率包括了原油全部裂解成气的产率,亦即常说的封闭体系下源岩的产气率,所得到的天然气产率是气源岩的最大产气率。另一种求取气源岩产气率的方法是在开放体系下对源岩进行热模拟实验,各阶段生成的天然气和原油均全部排出源岩,原油不能在源岩中进一步裂解为天然气。这两种情况都是地质中的极端情况。但是实际的地质条件大多是半开放体系,在这种情况下,源岩生成的油既不能全部排出烃源岩,也不能完全滞留于源岩中。不同地质条件下亦即开放程度不同情况下源岩产气率如何计算?具体方法为:求得封闭和开放体系下相同类型源岩的产气率,将上述两种体系下的产气率图版(中值曲线)输入盆地模拟软件中,得出烃源岩层在不同渗透条件下产气率图版。
(四)运聚系数
运聚系数是油气聚集量占生烃量的比例,是成因法计算资源量的一个关键参数,直接影响资源量计算结果。运聚系数的确定方法包括运聚系数模型建立法和运聚单元成藏条件分析法。
1.运聚系数模型建立法
通过刻度区解剖,确定影响运聚系数的主要地质因素及其与运聚系数的相关关系。刻度区解剖研究表明,烃源岩的年龄、成熟度、上覆地层区域不整合的个数和运聚单元的圈闭面积系数等地质因素与石油运聚系数之间存在相关关系。依此建立地质因素与石油运聚系数之间关系的统计模型,包括双因素模型和多因素模型。双因素模型(相关系数为0.922)的地质因素选用烃源岩年龄和圈闭面积系数:
lny=1.62-0.0032x1+0.01696x4
多因素模型(相关系数为0.934)的地质因素选用烃源岩年龄、烃源岩的成熟度、区域不整合个数和圈闭面积系数:
lny=1.487-0.00318x1+0.186x2-0.112x3+0.02118x4
式中:y——运聚单元的石油运聚系数,%;
x1——烃源岩年龄,Ma;
x2——烃源岩成熟度(Ro),%;
x3——不整合面个数;
x4——圈闭面积系数,%。
2.运聚单元成藏条件分析法
依据刻度区提供的大量运聚系数,依盆地类型和影响运聚系数的主要地质因素,分类建立运聚系数取值标准与应用条件。在评价中,根据刻度区解剖结果,确定了油气运聚系数分级取值标准(表4-7)。在评价中得到了推广应用,取得了良好的效果。
表4-7 石油运聚系数分级评价表
(五)最小油气田规模
最小油气田规模是指在现有工艺技术和经济条件下开采地下资源,当预测达到盈亏平衡点时的油气田可采储量。最小油气田规模对统计法计算的资源量结果有较大影响。为此,中国石油天然气集团公司等三大石油公司和延长油矿管理局对最小油田规模进行了专门研究。
通过对不同油价、不同开发方式和未来可能技术条件下最小油气田规模研究,确定了不同地区的最小油气田规模的取值。在地理环境相对较好的东部地区,其勘探开发成本较低,最小油气田规模一般在10×104~30×104t,在地理环境相对较差的西部地区,其勘探开发成本高,最小油气田规模一般在50×104t以上,对于海域来说,油气勘探开发成本更高,最小油气田规模更大,一般在150×104~500×104t。
(六)资源丰度
油气资源丰度是指每平方公里内的油气资源量,是类比法计算资源量的关键参数。通过统计分析,建立了资源丰度模型和取值标准。
1.资源丰度模型
通过刻度区解剖,建立刻度区内评价单元油气资源丰度和相关地质要素之间的统计预测模型:
新一轮全国油气资源评价
式中:y——运聚单元的石油资源丰度,104t/km2;
x1——烃源岩生烃强度,104t/km2;
x2——储集层厚度/沉积岩厚度,小数;
x3——圈闭面积系数,%;
x4——不整合面个数。
2.资源丰度取值标准
通过统计不同含油气单元资源丰度的分布特点,结合地质成藏条件,总结出各类刻度区资源丰度的取值标准。
(1)不同层系资源丰度:古近系凹陷由于成藏条件优越,成藏时间晚,石油地质资源丰度一般大于20×104t/km2;中生代凹陷成藏时间相对较长,石油地质资源丰度相对较低,一般约为10×104t/km2;古生代凹陷由于生、储层时代老,多期成藏多期改造、破坏,预计其资源丰度更低。
(2)不同类型运聚单元资源丰度:中新生代断陷或坳陷盆地长垣型、潜山型和断陷型中央背斜构造型,石油地质资源丰度高,一般大于40×104t/km2;中新生代裂陷盆地、坳陷盆地边缘构造型和古近系缓坡构造型石油资源丰度次之,一般为10×104~30×104t/km2;中生代盆地岩性型和古生代压陷盆地的构造型石油资源丰度相对较低,一般小于10×104t/km2。
(3)不同区块或区带级资源丰度:区块或区带级石油资源丰度差异更大,从小于1×104t/km2到大于200×104t/km2。其中潜山型、岩性—构造型、披覆背斜区块资源丰度较高,一般大于50×104t/km2,最大可大于200×104t/km2。构造—岩性型、断裂构造型资源丰度一般为30×104~50×104t/km2。地层—岩性型、断鼻型以及裂缝型区块、资源丰度较低,一般小于30×104t/km2。
通过刻度区解剖标定多种成藏因素下评价单元的资源丰度,不但为广泛应用类比法计算资源量提供了可靠的参数,同时也摆脱了过去以盆地总资源量为基础,利用地质评价系数类比将资源量分配到各评价单元的做法,使类比法预测的油气资源量在空间位置上更准确,提高了油气资源空间分布的预测水平。
(七)可采系数
国外主要采用建立在类比基础上的统计法计算油气可采资源量,而我国第一轮、第二轮全国油气资源评价没有计算油气可采资源量。本轮评价开展的油气资源可采系数研究,通过可采系数将地质资源量转化为可采资源量,这在国内外油气资源评价中尚属首次。可采系数是指地质资源中可采出的量占地质资源量的比例,是从地质资源量计算可采资源量的关键参数。
可采系数研究与应用是常规油气资源评价的重要组成部分,主要目的是通过重点解剖、统计和类比分析方法,对我国油气资源可采系数进行研究,为科学合理地计算油气可采资源量提供依据,进而对重点盆地和全国油气可采资源潜力进行评价。
1.评价单元类型划分
为使可采系数研究成果与评价单元划分体系有机结合,遵循分类科学性、概括性和实用性三个基本原则,以油气资源类型、盆地类型、圈闭类型、储层岩性、储层物性等地质因素为依据,对评价单元进行了分析和分类,将国内石油评价单元分为中生代坳陷高渗、古近纪与新近纪断陷盆地复杂断块高渗等24种类型,天然气评价单元分为克拉通盆地古隆起、前陆盆地冲断带等16种类型(表4-8、表4-9)。
表4-8 不同类型评价单元石油可采系数取值标准
表4-9 不同类型评价单元天然气可采系数取值标准
2.刻度油气藏数据库的建立
已发现油气资源赋存在油气藏中,建立刻度油气藏数据库是统计已发现油气资源采收率、分析影响采收率主控因素、预测油气资源可采系数的基础。刻度油气藏是油气资源可采系数研究中作为类比标准的,地质认识清楚、开发程度高、已实施二次采油或三次采油技术的油气藏。
刻度油气藏选择原则:①典型性——能代表国内外主要的油气藏类型,保证类比法应用基础的广泛性;②针对性和实用性——针对油气资源评价,有效地指导相应类型评价单元油气资源可采系数的确定;③开发程度高——油气藏开发程度高,地质参数和开发参数基本齐全;④三次采油技术应用具有代表性——尽量选择已实施三次采油技术的油藏,保证技术可采系数的可靠性。
对国内43个油藏、30个气藏,国外59个油藏、22个气藏进行了剖析:收集整理每个油气藏的主要地质和开发参数;每个油气藏的地质条件主要包括储层特征、圈闭条件、流体性质等,开发条件主要包括开采方式、开采速度、增产措施等;研究不同因素对采收率的影响程度,进而确定该油气藏采收率的主控因素;针对开采方式的不同,油藏的采收率可分为一次、二次或三次采收率;气藏主要是一次采收率。通过对每个油气藏的地质条件、开发条件和采收率进行分析,建立起国内外刻度油气藏数据库。
3.可采系数主控因素分析
对影响可采系数的地质条件、开发条件和经济条件进行了分析,建立起可采系数主控因素的评价模型。
(1)在大量统计和重点解剖的基础上,对油气地质条件中的因素逐一进行分析,并提炼出15项油气采收率的主控因素,即盆地类型、储层时代、圈闭类型、沉积相类型、储层岩性、储层厚度、储集空间类型、孔隙度、渗透率、埋深、含油饱和度、原油粘度、原油密度、变异系数、原始气油比。
(2)在诸多开发条件中,提高采收率技术是极为重要的因素,不同提高采收率技术适用条件不同,其提高采收率的潜力也差距很大。通过综合分析,主要技术对不同类型油藏的提高采收率潜力为:最小5%,中间值10%,最大值15%。
(3)利用石油公司提高采收率模拟研究成果,建立了大型背斜油藏、复杂背斜油藏、断块油藏、岩性油藏、复杂储层油藏等在税后内部收益率为12%、油田开发到含水95%时聚合物驱和化学复合驱采油时的油价与油田采收率之间的关系,若这五类油藏要达到相同的采收率,条件好的如大型背斜油藏、复杂背斜油藏所需的油价低于条件差的如岩性油藏、复杂储层油藏。
4.可采系数取值标准的建立
在研究中,解剖了国内43个油藏、30个气藏,国外59个油藏、22个气藏,统计分析了大量油气田采收率数据,给出了不同类型评价单元油气技术可采系数和经济可采系数取值范围,建立了不同类型评价单元油气可采系数取值标准(表4-8、表4-9)。
(1)不同类型评价单元石油可采系数相差较大,以技术可采系数为例:中生代坳陷高渗和古近纪与新近纪断陷盆地复杂断块高渗评价单元可采系数最大,其中间值大于40%;中生代坳陷中渗、古近纪与新近纪断陷盆地复杂断块中渗、中生代断陷、中新生代前陆、古生界潜山、古生界碎屑岩、古近纪残留型断陷、陆缘裂谷断陷古近纪与新近纪海相轻质油、陆缘弧后古近纪与新近纪海陆交互相轻质油等评价单元可采系数为30%~40%;中生代坳陷低渗、古近纪与新近纪断陷盆地复杂断块低渗、古生界缝洞、南方古近纪与新近纪中小盆地、低渗碎屑岩、重(稠)油中高渗、变质岩、砾岩、陆内裂谷断陷新近纪重质油、陆内裂谷断陷古近纪复杂断块等评价单元可采系数为20%~30%;低渗碳酸盐岩、重(稠)油低渗、火山岩等评价单元可采系数为15%~20%。
(2)不同类型评价单元天然气可采系数相差也较大:克拉通碳酸盐缝洞、礁滩和前陆冲断带等评价单元可采系数最大,其平均值大于70%;克拉通古隆起、克拉通碎屑岩、前陆前渊、南方中小盆地、陆缘断陷、火山岩、变质岩和海域古近纪与新近纪砂岩等评价单元可采系数为60%~70%;前陆斜坡、生物气、中生代坳陷、古近纪与新近纪断陷盆地复杂断块、残留断陷、砾岩等评价单元可采系数为50%~60%;致密砂岩等评价单元可采系数最小,其平均值小于50%。
5.可采系数计算方法的建立
可采系数计算方法包括可采系数标准表法和刻度区类比法两种方法。
(1)标准表取值法。利用可采系数标准表求取不同评价单元可采系数的步骤如下:在不同类型评价单元可采系数取值标准表中找到已知评价单元的所属类型;明确评价单元与可采系数相关因素(宏观、微观)的定性、定量资料;对照可采系数的类比评分标准表和类比评分计算方法,对评价单元进行类比打分;根据类比评价结果求取可采系数。
(2)刻度区类比法。以建立的国内外刻度油气藏数据库为基础,利用刻度区类比法来求取不同评价单元的可采系数。具体步骤如下:根据评价单元分类标准,将具体评价单元归类,并分析整理该评价单元的油气地质条件和开发条件;根据评价单元的类型及其地质条件和开发条件,从国内外刻度油气藏数据库选择适合的类比对象;对照可采系数的类比评分标准表和类比评分计算方法,对该评价单元及其类比对象进行打分并计算它们的得分差值;根据得分差值求取该评价单元的可采系数。
通过油气可采系数标准和计算方法在全国129个盆地中的推广应用,既检验了可采系数取值标准和所用基础数据的可靠性、可行性和适用性,保证了油气可采资源量计算的客观性,又获得了全国油气可采资源量。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。